www.bacs.ru

PROCESS GAS CHROMATOGRAPH MAG Applications

Organic Substance Production

Relevance

Every year demand on **Basic Organic Chemicals**, which are components for production of a large number of substances, is constantly increasing. Without these substances: polymers, surfactants, pesticides, additives, etc. it is practically impossible to imagine life of a modern man.

Besides, business competition also increases - customers need high quality product at a fair price. The first can be achieved by carrying out continuous monitoring of raw materials and products quality, the second - by use of the information received to increase production efficiency.

The best option for solving this problem is to use **Process Gas**Chromatograph MAG

Chromatograph MAG (model KC 50.310-000-01) is a modern high-tech equipment of home manufacture, which meets or exceeds world analogues. Flexible modular and explosion protected design allows you to choose the right configuration for a wide variety of analytical problems.

B A C S

Detector Type

Thermal conductivity detector (TCD)

Allows you to use micro-packed and capillary columns. Provides fast analysis and low limits of detection

✓ Thermo-chemical detector (CCD)

Allows you to carry out accurate measurement of low concentration flammable compounds, including hydrogen, hydrocarbons, etc.

✓ Electro-chemical detector (ECD)

Allows you to analyze sulfur-containing compounds from 0.1 ppm using only air as a carrier gas.

Provides linearity at wide range of measurement and high selectivity to H_2S and mercaptans.

Option:

Liquid Sample Injector

External heated sampling valve or injector-vaporizer provides direct introduction of vaporized liquid sample into analytical column without any losses of analyzed compounds. Maximum temperature of the injector is 220°C.

AdvantagesOf Process Gas Chromatograph:

Process optimization;

Reducing the costs of recycling and consumption waste disposal.

Quality control of raw materials, intermediate and end products

Energy saving

Applications

Further will be considered the basic technological processes of organic substances production and some of the possible applications of a process gas chromatograph MAG

The above list is not exhaustive.

To clarify the possibility of using the chromatograph MAG to solve a particular analytical problem, please fill in a questionnaire.

Production of lower olefins and dienes (pyrolysis of oil fractions)

Production of propylene (propane dehydrogenation)

Production of isobutylene (dehydrogenation of isobutane)

Production of ethanol (ethylene hydration)

Production of methyl tert-butyl ether (MTBE) (synthesis from methanol and isobutylene, comprising fraction)

Production of acrylic acid (two-stage oxidation of propylene)

Substance Production

Production of Lower Olefins and Dienes

Process: pyrolysis of oil fractions or hydrocarbon gases (steam cracking)

Synthesis: 1,3propylene ethylene isoprene butylene **butadiene** H₂S and CO₂ removal Gas liquefaction Ethylene Methane Butylene Propylene divinyl fraction Hydrogen Drying Steam Feed gas Pentanes Propane **Pyrolysis** Ethan C3+ C4+ C5+ **Pvrolvses** condensate Inhibition of side Rectification Rectification Rectification Benzine Compressing reactions Cold box Refinery products

Process Flow Diagram of Pyrolysis Unit

Examples of Solutions

ॐ Organic Substance Production

Oil Fraction and Hydrocarbon Gases Pyrolyses

Features of Chromatograph		
Analyzed medium	Gas	
A	H ₂ , CO, CH ₄ , ethylene, ethane, propylene,	
Analyzed components	propane,C4 ₊	
Detector type	TCD	
Number of analytical channels	2	
Column type	Micro-packed	
Carrier gas	Argon, Helium	
Duration of analysis	4:30 [min:sec]	

Chromatograms of thermal cracking products for olefin production

- B - A - C - S

Analytical channel № 1 chromatogram (H₂, CO, CH₄, ethylene, ethane)

Analytical channel No2 chromatogram (propylene, propane, $C4_+$)

Production of Propylene

Process: propane dehydrogenation

Process Flow Diagram of Propylene Production

Examples of Solutions

Propane Dehydrogenation (Production of Propylene)

Features of Chromatograph		
Analyzed medium LPG		
Analyzed components	Methanol, acetone, dimethyl ether	
Detector type	TCD	
Number of analytical channels	2	
Column type	Micropacked	
Carrier gas	Helium	
Duration of analysis	9:50 [min:sec]	

Dehydrogenation of oxygenates in propane

Analytical channel No 1 chromatogram (dimethylether)

Analytical channel No2 chromatogram (Methanol, acetone)

B A C

Production of Isobutylene

Process: dehydrogenation of isobutane

Process Flow Diagram of Isobutylene Production

Examples of Solutions

Dehydrogenation of Isobutane

Features of Chromatograph			
Analyzed medium	LPG		
Analyzed components	Isobutane, isobutylene		
Detector type	TCD		
Number of analytical channels	1		
Column type	Micropacked		
Carrier gas	Helium		
Duration of analysis	9:55 [min:sec]		

Control of composition content of isobutane-isobutylene fraction (IIF)

Analytical channel No 1 chromatogram

B A C

Production of Ethanol

Process: vapor-phase hydration of ethylene at high temperatures and pressures.

Process Flow Diagram of Ethanol Production

Examples of SolutionsProduction of Ethanol (ethylene hydration)

organic 🗠 **Substance Production**

Features of Chromatograph			
Analyzed medium	Gas		
Analyzed components	Acetylene, ethane, ethylene		
Detector type	TCD		
Number of analytical channels	1		
Column type	Micropacked		
Carrier gas	Helium		
Duration of analysis	6:00 [min:sec]		

Control of composition of ethylene-ethane fraction

Analytical channel No 1 chromatogram

Production of Methyl Tert-Butyl Ether (MTBE)

Process: synthesis from methanol and isobutylene containing fraction

Process Flow Diagram of MTBE Production

Sı

Examples of Solutions

Synthesis of Methyl Tert-Butyl Ether

Features of Chromatograph			
Analyzed medium	LNG		
Analyzed components	Hydrocarbons C3-C5, heavy residue		
Detector type	TCD		
Number of analytical channels	2		
Column type	Micropacked		
Carrier gas	Helium		
Duration of analysis	9:55 [min:sec]		

Control of composition of i-butane isobutylene fraction downstream E-201

A C S

Analytical channel No 1 chromatogram (hydrocarbons C3-C5)

Analytical channel №2 chromatogram (heavy residue)

Production of Acrylic Acid

Process: two-stage oxidation of propylene (I – propylene oxidation to acrolein, II – acrolein oxidation to acrylic acid)

Process Flow Diagram of Acrylic Acid Production

Examples of Solutions

Production of Acrylic Acid

Features of Chromatograph			
Analyzed medium	Gas		
Analyzed components	Propane, propylene, acrolein		
Detector type	TCD		
Number of analytical channels	2		
Column type	Micropacked		
Carrier gas	Helium		
Duration of analysis	7:55 [min:sec]		

Control of acrylic acid and ethers generator package

B A C

(propylene, propane)

Other Applications of Chromatograph MAG

Isoprene Production

Process: isopentane dehydrogenation

Methanol Production

Process: synthesis from carbon oxide and hydrogen

Ethylene Oxide Production

Process: gas phase oxidation of ethylene with oxygen or air

Ethylen Glycol Production

Process: non-catalytic hydration of ethylene oxide

Aromatic Production

Process: catalytic reforming of straight-run gasoline fractions, alkylation, dehydrogenation, etc.

Organic Substance Production

Reference List

No.	Customer	Location	Objectives
1	CJSC Togliattisyntez (SIBUR Togliatti LLC)	Production of Dimethyldioxane and formaldehyde recovery unit 1/16	Analysis of the direct isobutane-isobutylene fraction (IIF)
2	CJSC Togliattisyntez (SIBUR Togliatti LLC)	Production of Dimethyldioxane and formaldehyde recovery unit W-6	Analysis of the reverse isobutane-isobutylene fraction (IIF)
3	Tobolsk- Neftekhim LLC (SIBUR Tobolsk LLC)	ADPU Central Gas Fractionation Unit shop	Analysis of oxygenates in dry propane
4	JSC ROSPAN INTERNATIONAL (East Urengoy license area, Gas and Condensate Processing Plant)	Condensation stabilization unit No. 1. Condensate stabilization line unit no. 1	Analysis of LPG (technical propane-butane)
5	PJSC Tatneft	Tatneftegazpererabotka GFU-2 shop no.2	Propane fraction quality analysis at GFU-2
6	PJSC Tatneft	Tatneftegazpererabotka GFU-2 shop no.2	N-butane fraction quality analyses at GFU-2 shop no.2

B A C

Organic Substance Production

Reference List

No -	Customer	Location	Objectives
7	JSC Sibur- Neftekhim (SIBUR Dzerzhinsk LLC)	Production of acrylic acid and ethers, shop 101	Analysis of propane, propylene and acrolein in the production of acrylic acid
8	PJSC Omsky Kauchuk	Pipeline for exhaust gases to the separator pos. 213	Process control of isopropylbenzene content in exhaust gas
0	CJSC Togliattisyntez (SIBUR Togliatti LLC)	MTBE Preparation Unit ДЗ, downstream mixer 205a in P206/1,2	Process control of the composition of the hydrocarbon charge
10	CJSC Togliattisyntez (SIBUR Togliatti LLC)	MTBE Preparation Unit ДЗ, downstream reactors P206/1,2	Process control of the content of isobutylene, MTBE and methanol
11	CJSC Togliattisyntez (SIBUR Togliatti LLC)	MTBE Preparation Unit ДЗ	Process control of the MTBE composition

B A C

STF "BACS" LLC

Address: 443022 Samara, Kirova ave 22

Phone number: +7 (846) 267-38-12 (-13 / -14)

E-mail: info@bacs.ru, kom@bacs.ru

Web: www.bacs.ru