
www.bacs.ru

КОМПЛЕКСНЫЕ РЕШЕНИЯ И КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ ДЛЯ НЕФТЕГАЗОВОЙ ПРОМЫШЛЕННОСТИ

1992

Год основания компании НТФ БАКС 3

Производственные и сборочные площадки 200+

Количество сотрудников компании 1300+

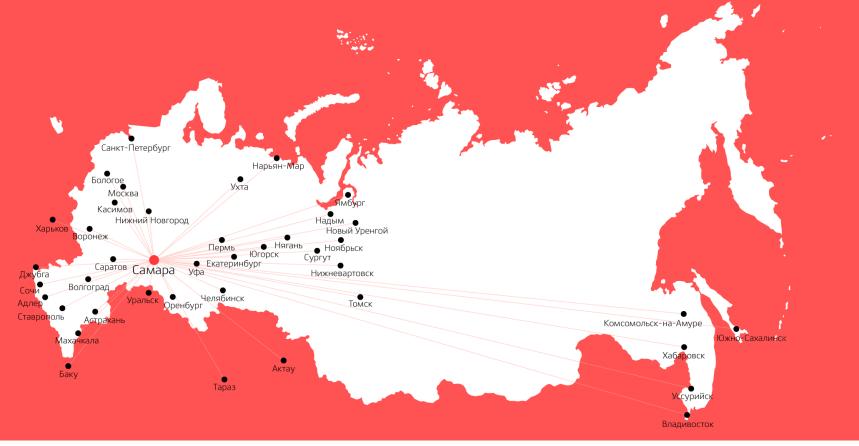
Контрольно-измерительных приборов произведено

Выпускаемое оборудование и услуги:

Комплексные решения в нефтегазовой, химической, энергетической отраслях

Потоковые **хроматографы, газоанализаторы** и аналитические комплексы

Расходомеры



Проектирование и внедрение **автоматизированных систем управления**

Сервисное обслуживание объектов

ГЕОГРАФИЯ ПОСТАВОК

500+

Крупных измерительных комплексов

1000+

Малых и средних измерительных комплексов

1300+

Приборов и оборудования

КЛЮЧЕВЫЕ ПОДРАЗДЕЛЕНИЯ КОМПАНИИ

ООО НТФ БАКС

(200 человек)

Отдел новой техники и разработок (R&D center)

20 🛉

Конструкторский отдел

Отдел электроники и электротехники

Проектно-технологический отдел

Проектный отдел

Отдел автоматизации

Испытательный метрологический центр

СЕРВИСНЫЙ ЦЕНТР

СИСТЕМА
МЕНЕДЖМЕНТА
КАЧЕСТВА
СООТВЕТСТВУЕТ
ISO 9001:2015

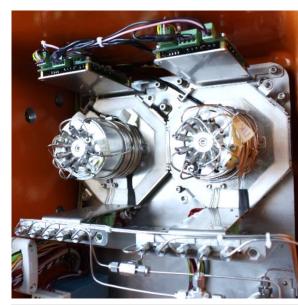
На предприятии осуществляется полный **метрологический контроль** и надзор за производством и текущим состоянием средств измерений.

Структура центра:

- Теплотехническая лаборатория;
- ✓ Электротехническая лаборатория;
- ✓ Физико-химическая лаборатория

www.bacs.ru

КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ


ПРОМЫШЛЕННЫЕ ХРОМАТОГРФЫ СЕРИИ «МАГ»

БАКС

Отличительные особенности

- ✓ Компактный дизайн во взрывозащищенном Ex d исполнении;
- Универсальные (ДТП,ТХД) и селективный (ЭХД) детекторы;
- ✓ Гибкая конфигурация до 4-х независимых аналитических каналов;
- Управление с помощью сенсорного экрана и 12" ЖК дисплея;
- Возможность анализа жидких проб;
- Встроенный селектор потоков на 6 линий (включая ПГС);
- ✓ Низкое потребление электроэнергии и газа-носителя;
- ✓ Внешние датчики давления газа-носителя и ПГС (опция);
- ✓ Автономная работа благодаря встроенному микроконтроллеру с установленным ПО;
- Широкие возможности по передаче данных.

ПРОМЫШЛЕННЫЕ ХРОМАТОГРФЫ СЕРИИ «МАГ»

Области применения хроматографов «МАГ»

- ✓ Анализ компонентного состава природного газа по ГОСТ 31371.7-2008, по методам А и Б;
- ✓ Анализ массовой концентрации серосодержащих соединении в природном газе по ГОСТ Р 53367-2009, попутном нефтяном газе и др. газовых средах;
- Контроль качества этановой фракции;
- Анализ гелиевого концентрата;

- Анализ водородсодержащего газа, постоянных газов;
- Анализ синтез-газа, продуктов газификации угля, продуктов пиролиза;
- Определение метанола и других оксигенатов в различных углеводородных средах;
- ✓ Анализ ШФЛУ и сжиженных углеводородных газов, в т.ч. контроль товарных продуктов на установках газофракционирования по ГОСТ Р 54484-2011;
- Контроль качества сырья и продуктов на установках производства МТБЭ и МТАЭ;
- ✓ Контроль работы технологических установок и анализ товарной продукции при производстве олефинов (этилена, пропилена, бутиленовых фракций);
- Анализ природного газа переменного и расширенного состава (по аттестованным методикам измерения).

ХРОМАТОГРАФ «МАГ» – АНАЛИЗ СЕРОСОДЕРЖАЩИХ СОЕДИНЕНИЙ

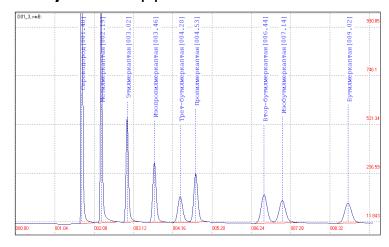
Промышленный хроматограф «МАГ-S» с электрохимическим детектором предназначен для определения массовой концентрации сероводорода и меркаптанов в различных газовых средах, в т.ч. в ГГП, по **ГОСТ Р 53367-2009, ASTM D 7493** и **ISO 19739**.

Преимущества ЭХД

Избирателен к сероводороду и меркаптанам;

В качестве газа-носителя используется только воздух, в отличие от ПФД, которому требуются He, H² и воздух;

Более широкий по сравнению с ПФД диапазон измерения;


Линейная характеристика. Градуировка проводится по 1 точке;

Высокая чувствительность, **низкий предел обнаружения** (от 0,1 мг/м³);

Отсутствие эффекта **«гашения»** сигнала со стороны углеводородов.

ЭХД - анализируемые

компоненты: сероводород и

меркаптаны;

время анализа: 15 мин.

БАКО

Хроматограф «МАГ» с жидкостным краномдозатором

Предназначен для контроля:

- ✓ качества легких углеводородов, товарного и технологического ШФЛУ, пентан-гексановой фракции;
- ✓ работы установок изомеризации «Изомалк»;
- ✓ качества входного сырья и товарных продуктов на установках производства МТБЭ и МТАЭ.

МАГ с инжектором

Хроматограф «МАГ» с инжектором-испарителем

Предназначен для контроля качества углеводородов C_6 - C_{10}

Особенности

Специально разработанный инжектор-испаритель позволяет проводить дозирование и испарение проб при рабочем давлении и высоких температурах в условиях минимальной дискриминации пробы.

Инжектор-испаритель

АНАЛИЗ ПРИРОДНОГО ГАЗА: РАСШИРЕННЫЕ ВОЗМОЖНОСТИ ХРОМАТОГРАФА «МАГ»

Анализ газа переменного состава по СТО Газпром 5.67-2016

✓ Анализ природного газа, содержание компонентов в котором изменяется за период между последовательными определениями компонентного состава более чем на допускаемое относительное отклонение значений молярной доли компонента в градуировочном газе и пробе.

Анализ природного газа расширенного состава по МИ

✓ Углеводороды до С₆+, диоксид углерода, азот (совместно с кислородом и аргоном) в расширенных диапазонах измерения.

Анализ ПГ по ГОСТ 31371.7-2008 метод Б с возможностью:

- Раздельного определения кислорода и азота;
- Анализа гелия и водорода на отдельном аналитическом канале с газом-носитель аргон, а также гелиевого концентрата.
- Измерение содержания метанола.

Совмещение нескольких методик на одном приборе

✓ Совместный анализ компонентного состава ПГ по ГОСТ 31371.7-2008 и серосодержащих соединений в ПГ по ГОСТ Р 53367-2009

ХРОМАТОГРАФ «МАГ» – АНАЛИЗ ПРИРОДНОГО ГАЗА ПЕРЕМЕННОГО СОСТАВА

Проведение анализа согласно СТО Газпром 5.67-2016 «Природный газ переменного состава»

Природный газ переменного состава

Газ природный, содержание компонентов в котором изменяется за период между последовательными определениями компонентного состава более чем на допускаемое относительное отклонение значений молярной доли компонента в градуировочном газе и пробе.

Особенности

Первичную настройку хроматографа проводят специалисты НТФ «БАКС» - проводится подтверждение **линейности детектора** с использованием **5-6 ГСО состава природного газа**

Градуировочную характеристику устанавливают для каждого компонента в рабочем диапазоне с использованием двух градуировочных смесей - стандартных образцов состава имитатора природного газа

В процессе эксплуатации контроль градуировочной характеристики выполняют ежедневно с помощью **одной из газовых смесей ГСО**, которая использовалась при её установлении

ХРОМАТОГРАФ «МАГ» — РАСШИРЕННЫЙ АНАЛИЗ СОСТАВА ПРИРОДНОГО ГАЗА

Определение компонентного состава природного газа до C6+ по методу Б ГОСТ 31371.7-2008

Особенности

Дополнительный аналитический канал для определения молярной доли **азота**

Отделение азота от смеси кислорода и аргона на колонке с молекулярными ситами.

Дополнительный аналитический канал для определения содержания **водорода** и **гелия** с газом-носителем аргон

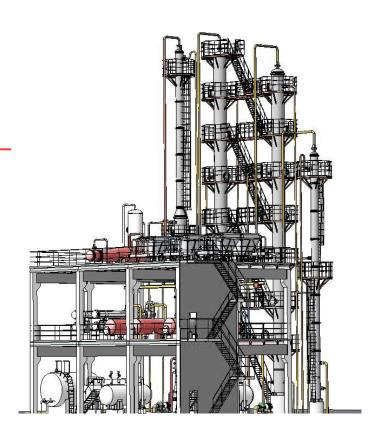
Конфигурация хроматографа		
Анализируемая среда	Природный газ	
Анализируемые компоненты	Кислород + аргон, азот, гелий, водород, углеводороды C1-C5, C6+, диоксид углерода	
Тип детектора	ДТП – 4 шт.	
Тип колонок	Микронасадочные, насадочная (мол.сита)	
Газ-носитель	Гелий, аргон	
Время анализа	6:00	

Возможна реализация МИ на переменный состав. Требуется поставка 2-х ПГС.

«ПАПРИТАНИЯ ХРОМАТОГРАФА «МАГ»

- ✓ Хроматограф «МАГ» успешно прошел испытания на соответствие требованиям ISO 10723, ISO 6974 и ГОСТ 31371 в метрологическом институте VSL Dutch Metrology Institute, Нидерланды
- Свидетельства об утверждении типа СИ РФ;
- ✓ Сертификат по взрывозащите ТР ТС 012/2011;
- ✓ Сертификат «ИНТЕРГАЗСЕРТ»;
- Сертификат Международной электрической комиссии по взрывозащите МЭК;
- Свидетельство об аттестации ПО;
- ✓ Сертификат по взрывозащите ATEX;
- ✓ Свидетельства утверждения типа Беларуси, Казахстана, Азербайджана, Узбекистана, Кыргызстана, Туркмении и Китая.

Ключевые элементы конструкции хроматографа защищены патентами РФ.



Установка газофракционирования

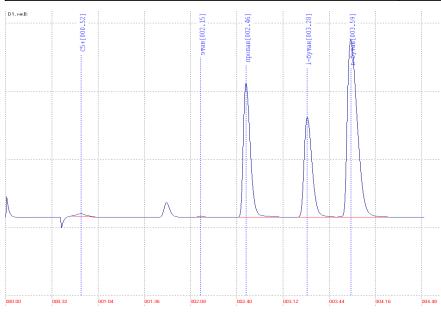
Бутановая фракция

Пентан-гексановая фракция

Пропановая фракция

БГС

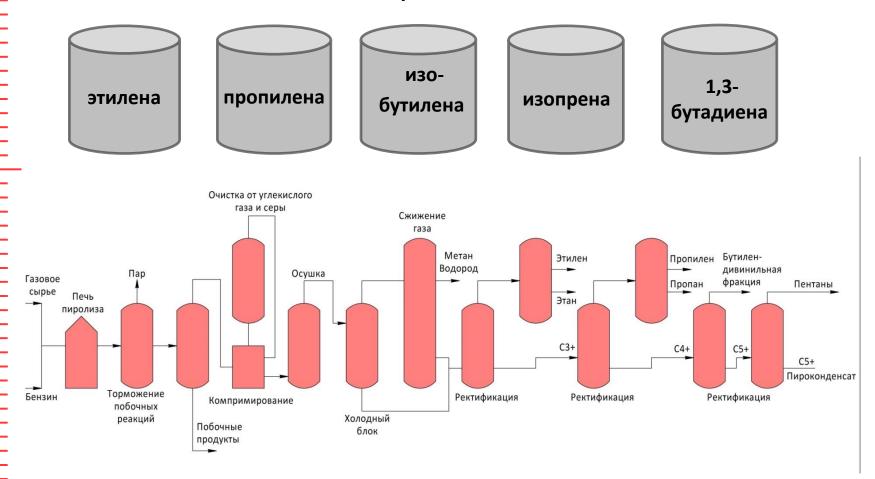
Хроматограф МАГ Определение компонентного состава



Хроматограф МАГ-С Определение массовой концентрации **H₂S** и **меркаптанов**

Контроль состава пропановой и бутановой фракций, получаемых на ГФУ

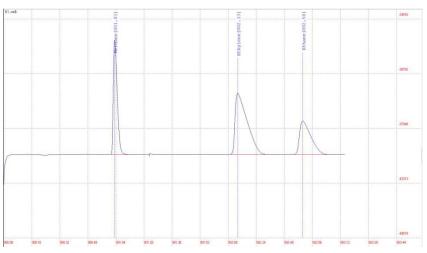
Конфигурация хроматографа		
Анализируемая среда	Сжиженный газ	
Анализируемые компоненты	Этан, пропан, изобутан, н-бутан (в пропановой	
	фракции)	
Тип детектора	дтп	
Количество аналитических каналов	1	
Тип колонок	Микронасадочные	
Газ-носитель	Гелий	
Время анализа	5:50 [мин:с]	

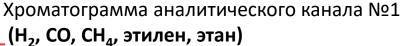

Хроматограмма аналитического канала №1

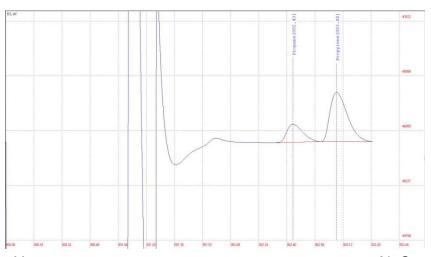
Производство низших олефинов и диенов

Процесс: Пиролиз нефтяных фракций или углеводородных газов (паровой крекинг)

Получение:


Принципиальная технологическая схема установки пиролиза




Пиролиз нефтяных фракций или углеводородных газов

Конфигурация хроматографа	
Анализируемая среда	Газ
Анализируемые компоненты	H ₂ , CO, CH ₄ , этилен, этан, пропилен, пропан, C4 ₊
Тип детектора	дтп
Количество аналитических каналов	2
Тип колонок	Микронасадочные
Газ-носитель	Аргон, гелий
Время анализа	4:30 [мин:с]

Хроматограммы продуктов термического крекинга при производстве олефинов

Хроматограмма аналитического канала №2 (пропилен, пропан, C4₊₎

Малогабаритный лабораторный хроматограф «МАГ»

Экономичный, гибкий и эффективный инструмент для решения рутинных аналитических задач в лабораториях по контролю качества газовых и легкокипящих жидких сред на базе аналитических модулей промышленного газового хроматографа «МАГ».

Особенности

Детекторы: универсальные (микро-ДТП и ТХД) и селективные (ЭХД, ПИД);

Управление с помощью сенсорного экрана;

Жидкостной кран-дозатор VICI для анализа сжиженных газов и легкокипящих жидкостей, испаритель для ввода жидких проб шприцем;

Электронные регуляторы давления газа-носителя (до 2-х шт.);

Гибкая модульная конфигурация для решения широкого круга аналитических задач, до 4-х аналитических каналов.

Преимущества

Возможность проведения серии измерений и градуировки в автоматическом режиме;

Высокая скорость анализа;

Легкость и удобство обслуживания;

Низкое потребление газа-носителя;

Беспроводное подключение к ПК по WI-FI;

Компактный корпус и малый вес;

Низкое потребление электроэнергии.

ПОРТАТИВНЫЙ ГАЗОВЫЙ ХРОМАТОГРАФ «S-XPOM»

БАКС

Лабораторный газовый хроматограф «S-Xpoм» для анализа сероводорода и меркаптанов в газовых и жидких средах.

Назначение

- Стационарное использование в лаборатории;
- ✓ Как портативный хроматограф в передвижных лабораториях, мобильных пунктах контроля качества углеводородов.

Области применения

Газ горючий природный по **ГОСТ Р 53367-2009**

Попутный нефтяной газ

Сжиженные углеводородные газы

Нефть и нефтепродукты

ПОРТАТИВНЫЙ ГАЗОВЫЙ ХРОМАТОГРАФ «S-XPOM»

Особенности и преимущества хроматографа S-Хром

- ✓ Электрохимический детектор (ЭХД) и капиллярная колонка;
- ✓ Специализированный узел ввода с одинаковым коэффициентом деления газовых и жидких проб;
- ✓ Возможность анализа высоких концентраций H₂S за счет ослабления сигнала детектора в 10 раз на заданных участках хроматограмм;
- ✓ Малое время анализа, не требуется возврата в исходное состояние после проведения очередного анализа;
- ✓ Газ-носитель воздух;

- ✓ Автономное газовое питание от встроенного микрокомпрессора (опция);
- ✓ Встроенный измеритель расхода газа-носителя на сбросе детектора и колонки (автономная настройка расходов газа без дополнительных устройств);
- ✓ Работа под управлением ПО «Анализатор», установленного на внешнем ПК;
- Малые габариты и энергопотребление;
- ✓ Высокая мобильность, удобство и простота работы;
- Низкая стоимость владения.

АНАЛИЗ СОДЕРЖАНИЯ КИСЛОРОДА В ГГП

Актуальность аналитической задачи

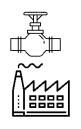
Технические условия на ГГП СТО Газпром 089-2010 регламентируют содержание O_2 на уровне 0,02 % (200 ppm)

Газовые хроматографы определяют смесь газов 0_2 , N_2 , Ar

В соответствии с Европейскими требованиями EN 16726:2015 среднесуточное содержание кислорода в природном газе не должно превышать 10 ppm

С 1.01.2017 вступил в действие ГОСТ Р 56834-2015, устанавливающий измерение содержания кислорода в природном газе электрохимическим методом

АНАЛИЗАТОР КИСЛОРОДА «АНОКС»


Назначение

Непрерывное измерение объемной доли кислорода в газовых средах, в том числе природном газе, в соответствии с требованиями ГОСТ Р 56834, СТО Газпром 089-2010 и ASTM D 7607-11

Области применения

Контроль параметров газа:

На объектах транспортировки и распределения природного газа;

На предприятиях химической нефтеперерабатывающей и газовой промышленности;

Контроль газа идущего на экспорт;

Для предупреждения нештатных ситуаций при возникновении значительной концентрации кислорода в природном газе.

АНАЛИЗАТОРЫ КИСЛОРОДА «АНОКС»

Промышленный стационарный анализатор

Трансмиттер

Отличительные особенности

- Электрохимический принцип измерения
- ✓ Широкий диапазон измерения O_2 (от единиц ppm до 100%)
- Малое время отклика и высокая точность анализа
- Автоматическая работа благодаря встроенному ПО
- Автоматическая калибровка по ПГС
- ✓ Возможность анализа двух потоков
- Хранение результатов в памяти прибора
- ✓ Различные способы передачи данных
- ✓ Встроенный блок питания на 220 В

- Ручная калибровка по ПГС
- ✓ Один анализируемый поток
- ✓ Передача данных внешним устройствам
- ✓ Связь по RS485 или 4-20 мА
- ✓ Питание от 24 В

ПЕРЕНОСНОЙ АНАЛИЗАТОР КИСЛОРОДА

Назначение

- ✓ Оперативный контроль содержания кислорода в ГГП в полевых условиях, в том числе при вводе в эксплуатацию сетей газопотребления и при вытеснении газовоздушной смеси из магистрального трубопровода после проведения ремонтных работ.
- ✓ Мобильный контроль содержания кислорода в газе в теплоэнергетике, пищевой, химической и нефтегазовой промышленности. Анализатор может использоваться в системе коммерческого учета и контроля качества газа на газораспределительных станциях и пунктах.

Преимущества

- ✓ Работает при температуре до -40 °С благодаря термостатированию сенсора;
- ✓ Степень защиты от внешних воздействий IP65;
- ✓ Взрывобезопасное исполнение вида Ex ib;
- ✓ Длительная работа от встроенного аккумулятора с возможностью подзарядки от автомобильного электропитания и от сети 220 В;
- ✓ Не требует дополнительных газов и подготовки пробы;
- Малые габариты и вес;
- ✓ Простота в обслуживании.

Анализаторы серии «ГигроСкан» предназначены для автоматического измерения массовой концентрации влаги и температуры точки росы (ТТРв) по воде в газовых средах, в том числе в природном газе при рабочем давлении по ГОСТ 20060-83 и ГОСТ P 53763-2009.

Анализаторы выпускаются в следующих исполнениях

ГигроСкан-С Анализатор промышленный взрывозащищенный (стационарный)

ГигроСкан-Т **PRO**

ГигроСкан-Т Light

трансмиттер

Анализатор промышленный взрывозащищенный -

ГигроСкан-Т

Micro

ГигроСкан-П Анализатор переносной взрывозащищенный

Области применения анализаторов

Газ горючий природный, в т.ч. газ, подготовленный для транспортирования по подводным газопроводам

Импульсный, топливный и пусковой газ на компрессорных станциях

Природный газ, подготовленный к сжижению, контроль работы установок осушки при производстве СПГ

Газ природный топливный компримированный для двигателей внутреннего сгорания по **ГОСТ 27577-2000** на **АГНКС**

Высокая чувствительность

✓ Диапазон измерения от -70°C TTPв

Измерение при рабочем давлении пробы – до 25 МПа

 С последующим пересчетом результата на нужное давление благодаря встроенному датчику давления анализируемого газа

Оперативность и непрерывность измерения

Благодаря малому времени отклика сенсора

Неприхотливость в эксплуатации

 ✓ Не требует калибровки, настройки и обслуживания в межповерочный интервал

Низкая стоимость владения

 ✓ Не требует размещения в обогреваемой зоне, подачи вспомогательных газов, замены расходных материалов

ГигроСкан-С

Предназначен для автоматического измерения температуры точки росы (TTP) в газовых средах и расчёта массовой концентрации влаги

Отличительные особенности

- ✓ Непрерывный или периодический (для экономии анализируемого газа) режимы работы благодаря встроенным э/м клапанам;
- ✓ Попеременный анализ до 2-х потоков;
- ✓ Широкий температурный диапазон эксплуатации: от -40 до +50°С благодаря термостатированию чувствительного элемента;
- Автоматическая работа без вмешательства оператора;
- Хранение результатов измерения в памяти прибора;
- Отображение результатов измерения в выбранных единицах и состояния анализатора на дисплее;
- Различные способы передачи данных.

ГигроСкан-Т **«PRO»**

ГигроСкан-Т **«Light»**

ГигроСкан-Т «Micro»

- Взрывобезопасное исполнение вида Ех d
- Анализ 1 потока газа
- Возможность подключения нескольких трансмиттеров к одному контроллеру
- Возможность использования совместно с потоковым хроматографом
- Низкая стоимость приобретения, владения и обслуживания
- Встроенный датчик давления анализируемого газа (опционально)
- Непрерывный или периодический анализ (с внешним э/м клапаном)
- Рабочая температура: от -40 до +50°C
- Наличие дисплея и кнопки управления
- Передача данных по RS485, 4-20мA, 4-20MA+HART

- Нет датчика давления
- Непрерывный режим анализа
- Рабочая температура: от -10 до +50°C
- Управление с внешних устройств
- Передача данных по RS485 или 4-20мА

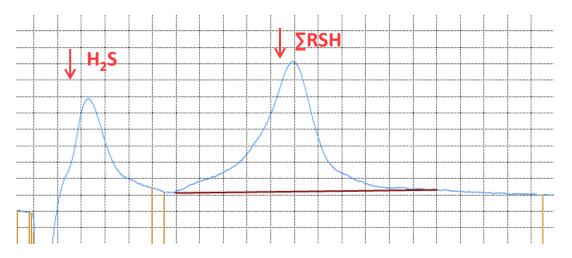
ПЕРЕНОСНОЙ АНАЛИЗАТОР ВЛАЖНОСТИ «ГИГРОСКАН»

ГигроСкан-П

- ✓ Оперативный контроль содержания влаги и ТТРв в ГГП, импульсном, топливном и пусковом газе и других горючих газах в полевых условиях, в т.ч. при вводе в эксплуатацию газопроводов и после проведения ремонтных работ.
- ✓ Мобильный контроль содержания влаги в различных газовых средах в теплоэнергетике, пищевой, химической и нефтегазовой промышленности.

- Высокая чувствительность и малое время отклика;
- ✓ Встроенный датчик давления анализируемого газа;
- Не требует дополнительных газов и подготовки пробы;
- ✓ Степень защиты от внешних воздействий IP65;
- ✓ Взрывобезопасное исполнение вида Ex mb;
- ✓ Длительная автономная работа от аккумулятора с возможностью подзарядки от автомобильного электропитания и от сети 220 В;
- Малые габариты и вес;

Простота в работе и обслуживании.



Основан на определении концентрации **меркаптановой серы** в природном газе с использованием **электрохимического** детектора **(ЭХД)** с отделением мешающего компонента — **сероводорода**.

Аналитический цикл

- Отбор пробы в дозирующую петлю
- ✓ Ввод пробы с помощью воздуха, подаваемого насосом
- Выход пика сероводорода (не измеряется)
- Переключение клапанов на обратную отдувку
- Выход меркаптанов одним пиком и измерение их суммарной концентрации.

Длительность аналитического цикла от 5 минут

ГАЗОАНАЛИЗАТОР «АНОД»: ПРЕИМУЩЕСТВА

✓ Автономная работа

Прибор работает в автоматическом режиме без вмешательства оператора, не требуея постоянного подключение к ПК.

✓ Автоматическая калибровка

Заявленная точность анализа достигается благодаря регулярной автоматической калибровке прибора по встроенному источнику микропотока этилмеркаптана.

✓ Отсутствие мешающих компонентов

ЭХД избирателен к серосодержащим соединениям и не чувствителен к другим компонентам природного газа. При этом происходит отделение сероводорода.

✓ Обработка и передача данных

Данные хранятся в памяти прибора, отображаются на встроенном дисплее и могут передаваться внешним устройствам при помощи различных интерфейсов.

✓ Удобство монтажа

Компактный взрывозащищенный корпус анализатора легко монтируется прямо на трубу после установки одоризации на ГРС или на ГРП.

✓ Низкая стоимость владения

Прибор не требует подключения дополнительных газов, отличается низким энергопотреблением и может эксплуатироваться в широком диапазоне температур: от -40 до +50°C.

ГАЗОАНАЛИЗАТОР «АНОД» ТРАНСМИТТЕР

Упрощенная и удешевленная версия анализатора степени одоризации для оперативного контроля содержания меркаптановой серы в различных точках газораспределительной сети

Отличительные особенности

- Автоматическая работа без вмешательства оператора;
- ✓ Удаление H₂S с помощью фильтра;
- ✓ Высокая скорость анализа;
- Автоматическая калибровка по ПГС;
- ✓ Результаты измерения не хранятся в памяти прибора, а передаются внешним устройствам по RS485 или 4-20 мА;
- ✓ Температура в месте установки: от +5 до +50°C
- ✓ Питание от 24 В;

- Низкое энергопотребление: до 15 Вт;
- Малые габариты: 359x284x196 мм (ДхШхВ) и вес: до 8 кг;
- Низкая стоимость приобретения, владения и обслуживания.

Оптимальное решение для установки на ГРП

ПРОМЫШЛЕННЫЙ АНАЛИЗАТОР РТУТИ В ПРИРОДНОМ ГАЗЕ

Принцип работы

Определение атомарной ртути методом атомной абсорбции с использованием одноходовой или многоходовой кювет.

Применение

Потоковый контроль содержания ртути в газе:

- На объектах транспортировки и газопереработки;
- В пунктах передачи газа на экспорт;
- Контроль газа для сжижения на заводах производства СПГ.

Преимущества решения

- Отсутствие необходимости в сложной пробоподготовке;
- Широкий диапазон измерений;
- Полностью автоматическая работа;
- Не требует дополнительных газов;
- Высокая скорость анализа;
- Наличие ЖК дисплея для отображения информации.

СИСТЕМА ОТБОРА ПРОБ ГАЗА ДЛЯ ЛАБОРАТОРНОГО АНАЛИЗА - СОГ

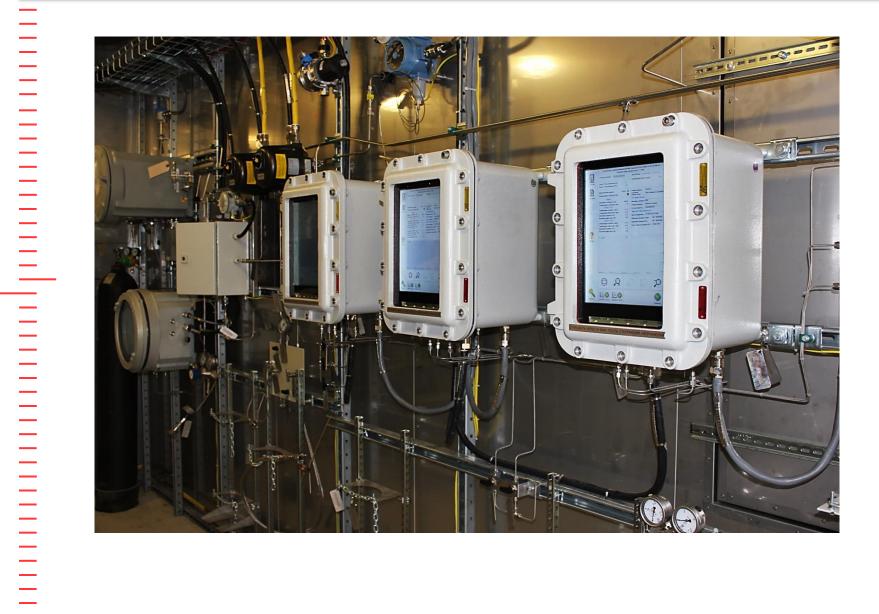
Назначение

Система отбора проб природного газа «СОГ» КС 50.110-000 предназначена для косвенного отбора точечных проб газа из газопровода в контейнер, отбора проб для дальнейшего транспортирования к месту проведения анализа компонентного состава пробы газа.

Система «СОГ» обеспечивает представительность отбираемой для лабораторного анализа пробы газа в соответствии с ГОСТ 31370-2008: «Газ природный. Руководство по отбору проб» приложение D, включая поддержание необходимого температурного режима и контроля давления заполнения.

Применение для следующих видов газа

- ✓ Газ горючий природный;
- Попутный нефтяной газ и газообразные продукты его переработки;
- ✓ Газ для коммунально-бытового потребления;
- ✓ Компримированный природный газ на АГНКС.



www.bacs.ru

АНАЛИТИЧЕСКИЕ КОМПЛЕКСЫ И СИСТЕМЫ КОНТРОЛЯ КАЧЕСТВА

БЛОК КОНТРОЛЯ КАЧЕСТВА ПРИРОДНОГО ГАЗА

Блок контроля качества природного газа

Предназначен для потокового измерения следующих физико-химических параметров природного газа

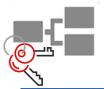
Компонентный состав природного газа (ГОСТ 31371.7, ISO 6974) с последующим расчетом теплотворной способности, относительной и абсолютной плотности, числа Воббе и фактора сжимаемости (ГОСТ 31369, ISO 6976)

Массовая концентрация сероводорода, меркаптанов и общей серы (ГОСТ Р 53367, ISO 19739)

Молярная доля кислорода (ГОСТ Р 56834, ASTM D 7607-11)

Температура точки росы по воде (ГОСТ 20060, ГОСТ Р 53763, ISO 18453, ISO 6327:1981)

Температура точки росы по углеводородам dew point (ГОСТ 20061, ГОСТ Р 53762, ISO 23874, ISO/TR 12148)



Наше решение

Блок контроля качества от одного производителя

Мы производим полную линейку аналитических приборов для контроля качества природного газа.

Мы осуществляем системную интеграцию и поставляем комплексное решение – блок контроля качества «под ключ».

БЛОК КОНТРОЛЯ КАЧЕСТВА ПРИРОДНОГО ГАЗА

Аналитические приборы для контроля качества природного газа

МАГ Промышленный газовый хроматограф

АнОкс Анализатор кислорода

ГигроСкан Анализатор влажности

- Анализ компонентного состава природного газа с расчетом его физико-химических параметров
- Расчет температуры точки росы по углеводородам
- Измерение сероводорода, меркаптанов и общей серы (с электрохимическим детектором)
- Измерение молярной доли кислорода с помощью электрохимического сенсора
- ✓ Измерение температуры точки росы по воде сорбционноемкостным методом

Анализатор температуры точки росы по углеводородам находится в стадии разработки

Назначение комплекса

Потоковый анализ компонентного состава и физико-химических показателей товарного СПГ в соответствии с ГОСТ Р 56021-2014 и отпарного газа в соответствии с ГОСТ 56835-2015, а также потоковый контроль состава технологических сред в процессе производства СПГ.

Функции комплекса

- ✓ Представительный отбор проб СПГ в соответствии с требованиями ГОСТ Р 56719-2015 (ISO 8943) с использованием Потокового пробоотборника;
- ✓ Анализ компонентного состава СПГ на потоке по ГОСТ 31371.7-2008 (ISO 6974) с последующим расчетом физико-химических показателей СПГ по ГОСТ 31369-2008 (ISO 6976);
- ✓ Анализ массовой концентрации сероводорода и меркаптановой серы в СПГ по ГОСТ Р
 53367-2009 (ISO 19739) на потоке и/или в лаборатории;
- ✓ Анализ компонентного состава отпарного газа по ГОСТ Р 56835-2015 на потоке с последующим расчетом физико-химических показателей по ГОСТ 31369-2008 (ISO 6976);
- ✓ Определение содержания кислорода в СПГ и в отпарном газе согласно ГОСТ Р 56834-2015 (ASTM D 7607) непрерывно на потоке и/или с помощью переносного анализатора кислорода в лаборатории или на объекте в периодическом режиме.
- ✓ Измерение массовой концентрации паров ртути.

СОСТАВ КОМПЛЕКСА

✓ Пробоотборник потоковый для отбора и разгазирования проб СПГ (соответствует ГОСТ Р 56719-2015);

- Хроматографы газовые промышленные «МАГ» для анализа на потоке:
 - Компонентного состава СПГ по ГОСТ 31371.7-2008 (ISO 6974);
 - Состава отпарного газа по ГОСТ Р 56835-2015;
 - Массовой концентрации серосодержащих соединений в СПГ по ГОСТ Р 53367-2009 (ISO 19739), или:
- ✓ Хроматограф лабораторный «S-Хром» для анализа серосодержащих соединений в СПГ в лаборатории по ГОСТ Р 53367-2009;

Анализатор влажности «ГигроСкан» для автоматического измерения массовой концентрации влаги и температуры точки росы (ТТРв) по воде в СПГ по ГОСТ 20060-83, ГОСТ Р 53763-2009 (ISO 18453, ISO 6327:1981).

✓ Газоанализатор «АнОкс» для анализа кислорода в СПГ по ГОСТ Р 56834-2015 (ASTM D 7607) в потоковом режиме, или:

✓ Анализатор кислорода переносной для измерения кислорода в СПГ в лаборатории или на объекте в периодическом режиме.

✓ Анализатор ртути «МЕРК» для автоматического измерения массовой концентрации паров ртути.

Анализатор точки росы по углеводородам находится в разработке.

КОМПЛЕКС ДЛЯ КОНТРОЛЯ КАЧЕСТВА СПГ

Лабораторный комплекс для контроля качества СПГ

- Отбор проб товарного СПГ с помощью лабораторного поршневого криогенного пробоотборника по ГОСТ Р 56719-2015 с последующей транспортировкой в лабораторию и разгазированием для проведения анализа;
- Определение компонентного состава и физико-химических показателей разгазированного СПГ на лабораторном хроматографе по ГОСТ 31371.7-2008;
- Измерение массовой концентрации сероводорода и меркаптанов в разгазированном СПГ на лабораторном хроматографе «S-Xpoм» с ЭХД по ГОСТ Р 53367-2009;
- Анализ концентрации кислорода в разгазированном СПГ с помощью переносного анализатора кислорода по ГОСТ Р 56834-2015 в лаборатории и в месте размещения блока контроля качества товарного СПГ;

Определение компонентного состава, физико-химических показателей и содержания кислорода для

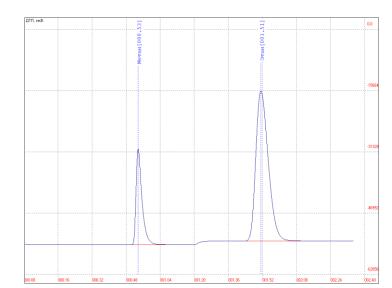
отпарного газа по ГОСТ Р 56835-2015.

Пробоотборник СПГ поршневой криогенный

Портативный газовый хроматограф «S-Xpoм»

Переносной анализатор кислорода

АНАЛИЗ НЕСТАБИЛЬНОГО ГАЗОВОГО КОНДЕНСАТА



Измерительный комплекс для анализа нестабильного газового конденсата

Комплекс на базе хроматографа "МАГ" предназначен для определения лёгких углеводородов в нестабильном газовом конденсате в соответствии с ГОСТ Р 57851.3-2017 «Смесь газоконденсатная. Часть 3. Конденсат газовый нестабильный. Определение компонентно-фракционного состава методом газовой хроматографии без предварительного разгазирования пробы».

Состав комплекса:

- Промышленный хроматограф МАГ;
- ✓ Блок отбора и первичной подготовки проб;
- ✓ Блок вторичной подготовки, стабилизации и разгазирования пробы.

ДТП - анализируемые

компоненты: метан и этан;

время анализа: 6 минут

АНАЛИЗ НЕСТАБИЛЬНОГО ГАЗОВОГО КОНДЕНСАТА

Особенности

Автоматическое дозирование и **полное испарение** легких компонентов конденсата с получением представительной пробы;

Автоматическое удаление неиспаряемого остатка;

Время анализа – не более 6 минут

Низкое потребление электроэнергии и газа-носителя.

Метрологические и эксплуатационные характеристики измерительного комплекса подтверждены по результатам опытно-промышленных испытаний и эксплуатации на объекте **AO** «**HOBATЭK**-**Пур**».

КОМПЛЕКС ДЛЯ КОНТРОЛЯ ПРОЦЕССА ПИРОЛИЗА

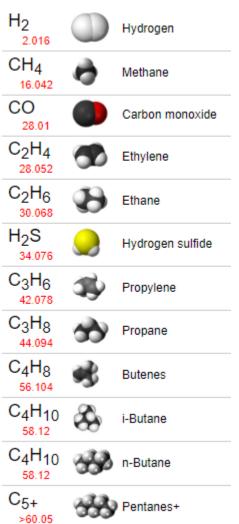
Состав комплекса:

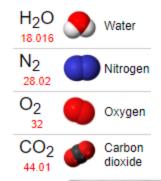
- Блок аналитический;
- ✓ Блок подготовки пробы;
- Система переключения потоков (опция);

Назначение комплекса

Автоматизированное определение состава газообразных и жидких продуктов пиролиза с целью оптимизации работы пиролитической установки и управления процессом их дальнейшей утилизации и переработки.

Особенности


- ✓ Гибкая конструкция на базе аналитических модулей хроматографа «МАГ»;
- ✓ Потоковое определение состава пиролизного газа с расчетом физико-химических показателей;
- Возможность анализа жидкой фракции (опционально);
- ✓ Автоматическая работа с возможностью ручного ввода проб;
- ✓ Анализ до 6 газовых потоков из различных реакторов;
- Блок отбора и подготовки проб газа без избыточного давления;
- Управление комплексом с помощью сенсорного ЖК-дисплея;
- ✓ Удаленный доступ к результатам измерения и настройкам комплекса через WEB-интерфейс.


КОМПЛЕКС ДЛЯ КОНТРОЛЯ ПРОЦЕССА ПИРОЛИЗА

БАКС

Анализируемые компоненты

Density

Relative density	
Density (kg/m3)	
Compression factor	

Расчетные параметры

Energy

Mass calorific value (MJ/kg)

Volume calorific value (MJ/m3)

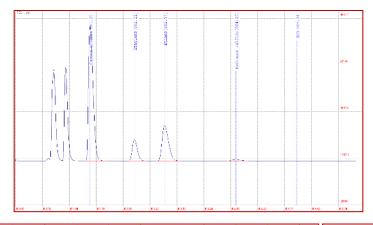
Wobbe index (MJ/m3)

Parameters

Methane number

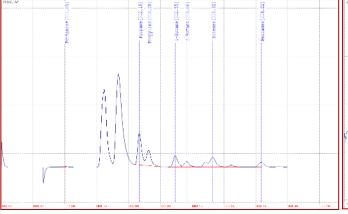
Molecular weight (kg/kmole)

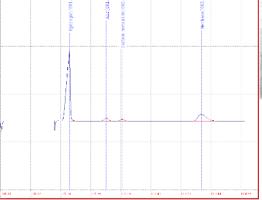
Water Dew-Point (°C)


КОМПЛЕКС ДЛЯ КОНТРОЛЯ ПРОЦЕССА ПИРОЛИЗА

БАКС

Внедрение комплекса в эксплуатацию


Комплекс для анализа газообразных продуктов пиролиза прошел испытания и успешно внедрен в эксплуатацию на производственной площадке «HEDVIGA GROUP», Чехия.



Хроматограммы газообразных продуктов пиролиза

ХРОМАТОГРАФИЧЕСКИЙ КОМПЛЕКС «ГЕЛИЙ-МИКРО»

Назначение

Контроль качества гелия марок A и Б, гелия марки 6.0 и жидкого гелия на наличие микропримесей Ne, CH₄, O₂+Ar, N₂, CO, CO₂ и H₂.

Принцип работы

Метод основан на сорбционном концентрировании определяемых компонентов в накопительных колонках при температуре жидкого азота с последующей термодесорбцией, хроматографическим разделением на аналитических колонках и детектированием на детекторах по теплопроводности и термохимическом детекторе. Для анализа гелия марки 6.0 и жидкого гелия применяется 2-канальный плазменно-эмиссионный детектор.

Достоинства комплекса

- ✓ Не требует особо чистых газов;
- ✓ Предел детектирования от 2 ppb (для «Гелий-Микро 6.0»);
- Автоматический режим работы комплекса;
- ✓ Продолжительность одного цикла анализа не более 13 мин;
- Отсутствие намерзания льда на частях криоконцентратора;
- ✓ Сбор и обработка информации на ПЭВМ с выдачей протокола анализа.

КОМПЛЕКС ДЛЯ АНАЛИЗА СЕРОВОДОРОДА И МЕРКАПТАНОВ В НЕФТИ

Применение

Определение массовой концентрации сероводорода, метил - и этилмеркаптанов в нефти на потоке с использованием уникального парофазного пробоотборника проточного типа хроматографическим методом в соответствии с МВИ №2-12 от 14.02.2012

Преимущества

- ✓ Запатентованный парофазный пробоотборник, не имеющий мировых аналогов;
- ✓ Время анализа 10 минут;
- ✓ Низкий предел обнаружения 0,02 мг/м³ (в газовой фазе)
- Отсутствие движущихся частей в парофазном пробоотборнике;
- Непрерывная автоматическая работа;
- ✓ Электрохимический детектор с высокой линейностью;
- ✓ Газ-носитель только воздух;
- Автоматическая калибровка по одной поверочной газовой смеси;
- Бесперебойная работа и долговечность.

Парофазный пробоотборник

АВТОМАТИЧЕСКАЯ СИСТЕМА КОНТРОЛЯ И УЧЁТА ВЫБРОСОВ

Автоматическая система контроля и учёта выбросов загрязняющих веществ «АСПЕКТ»

Система обеспечивает непрерывный автоматический анализ загрязняющих веществ в дымовых газах и измерение температуры, давления, расхода; рассчитывает массу выбросов на основе измеренных значений.

Особенности

- ✓ Наличие конфигураций системы под задачи холодного/сухого и горячего/влажного анализа;
- Оптические анализаторы (ИК, УФ, лазерные, ИК-Фурье);
- ✓ Полное соответствие нормативной документации (219-Ф3, ИТС НДТ 22.1, ГОСТы серии «Выбросы стационарных источников»)

АИС контроля и учета выбросов также позволяет оценивать полноту протекания технологических процессов и эффективность систем фильтрации и очистки газов на нефтехимических, химических, нефте- и газоперерабатывающих заводах.

www.bacs.ru

МАССОВЫЕ ИЗМЕРИТЕЛИ РАСХОДА

Назначение

для прямого измерения:

- массового расхода
- плотности
- температуры

для вычисления:

• объёмного расхода

Преимущества

Высокая точность

✓ Погрешность измерения массового расхода — 0,1%, погрешность измерения плотности - 0,5 кг/м³

Функциональность

- Надежная работа при изменении температуры и давления рабочей среды.
- ✓ Энергонезависимая память, интеллектуальное питание.

Надежность

- ✓ Межповерочный интервал 4 года.
- ✓ Средний срок службы расходомера 15 лет, наработка на отказ – 15 000 ч.

Экономичность

- Обеспечение требуемых сроков изготовления;
- ✓ Удобные условия оплаты;

Стоимость ниже импортных аналогов за счет собственного производства в России (Самара, Ульяновск).

КОРИОЛИСОВЫЙ РАСХОДОМЕР МИР

Нефть

- Меркаптаны
- Газовый конденсат 🗸 Жидкий жир

- Диз. топливо 🗸
 - Бензин

Мазут

Спирт

Битум

- Сжиженный газ
- Масло

Молочные продукты

www.bacs.ru

КОМПЛЕКСНЫЕ РЕШЕНИЯ

УЗЛЫ ИЗМЕРЕНИЯ РАСХОДА ГАЗА (ГИС, СИКГ)

Назначение

Узел измерения расхода газа (УИРГ) предназначен для коммерческого или оперативного (хозрасчетного) учета расхода, **определения компонентного состава** и **физико-химических показателей** природного или свободного нефтяного газа (плотность, калорийность, число Воббе и температуру точки росы по влаге и углеводородам).

Нормативная документация

- УИРГ, предназначенные для работы в составе ГИС на магистральных газопроводах, подземных хранилищ газа, ГПЗ и т.д., проектируются в соответствии с требованиями СТО Газпром 5.37-2011.
- УИРГ для независимых поставщиков и потребителей природного газа соответствуют требованиям ГОСТ Р 8.741-2011.
- Системы измерения количества и показателей качества свободного нефтяного газа (СИКГ) проектируются в соответствии с требованиями ГОСТ Р 8.733-2011, а также нормативной документацией крупнейших нефтедобывающих компаний Роснефть, Лукойл, СИБУР и др.

СИСТЕМЫ ИЗМЕРЕНИЯ КОЛИЧЕСТВА И КАЧЕСТВА ГАЗА (СИКГ)

СИКГ — современные автоматизированные комплексные решения, позволяющие осуществлять учёт количественных и качественных показателей сухого отбензиненного газа (СОГ), попутного нефтяного, факельного и технологических газов.

- ✓ Блочно-модульное исполнение
- ✓ Измерительные трубопроводы до 1200 мм
- ✓ Продукция сертифицирована

- ✓ Минимальное давление от 0,001 МПа изб.
- ✓ Динамический диапазон измерения расхода 1:120 (для СИКГ 1-й категории, учет ПНГ и СОГ), 1:1500 (для СИКГ на факел, сухой/влажный ПНГ)
- ✓ Погрешность измерения газа: от 0,6% (узлы учета СИКГ класса А); от 2,5...5% (оперативный учет и факельное хозяйство)
- ✓ Скорость газа от 0,03 м/с до 120 м/с

Состав комплекса

- узел очистки газа (опционально)
- ✓ блок измерительных линий (БИЛ)
- ✓ измерительная система (ИС УИРГ)
- ✓ система подготовки импульсного газа (опционально)
- ✓ система сбора конденсата (опционально)
- ✓ система электроснабжения
- ✓ система охранно-пожарной сигнализации и контроля загазованности
- укрытия с системами отопления, вентиляции и кондиционирования
- система автоматического управления (САУ УИРГ)
- система связи и телемеханики

СИСТЕМЫ ИЗМЕРЕНИЯ КОЛИЧЕСТВА И КАЧЕСТВА ГАЗА (СИКГ)

БЛОК ПОДГОТОВКИ ГАЗА (БПТГ)

Для обеспечения дальнейшей транспортировки ПНГ либо для использования в качестве топлива ГПЭС и ГТЭС, производится его подготовка до необходимых требований.

Комплект оборудования БПТГ состоит из технологических узлов максимальной степени заводской готовности, **размещенных в блок-боксах** (контейнерах) на площадке объекта или **на открытой площадке** в укрытии.

✓ Узел очистки

- Узел предотвращения гидратообразования
- Узел редуцирования

- ✓ Узел одоризации
- ✓ Узел замера расхода газа общего на БПГ и по каждому выходу
- ✓ Блок-бокс операторный с отсеком подготовки теплоносителя

АВТОМАТИЗИРОВАННАЯ ГАЗОРАСПРЕДЕЛИТЕЛЬНАЯ СТАНЦИЯ

Назначение

АГРС — это комплексное автоматизированное решение для газоснабжения потребителей в заданном объеме с определенным давлением, необходимой степенью очистки, одоризации и учетом количества газа.

Состав комплекса

блок переключения (БП)

блок технологический (БТ)

блок подготовки теплоносителя (БПТ)

блок КИПиА (БКИП)

блок одоризации (БО)

азотная рампа (АР)

ёмкостное оборудование (ЕО)

АВТОМАТИЗИРОВАННАЯ ГАЗОРАСПРЕДЕЛИТЕЛЬНАЯ СТАНЦИЯ

Блоки очистки газа от механических примесей и капельной влаги

Блок одоризации определёнными дозами в потоки транспортируемого газа

ГАЗОРЕГУЛЯТОРНЫЙ ПУНКТ БЛОЧНЫЙ (ГРПБ)

Назначение

Автоматически обеспечивает непрерывный технологический процесс подачи газа на ТЭЦ с требуемыми параметрами.

Типовой состав

- входной коллектор;
- узел редуцирования;
- выходной коллектор;
- отсек операторной.

ГАЗОРЕГУЛЯТОРНЫЙ ПУНКТ БЛОЧНЫЙ (ГРПБ)

Особенности

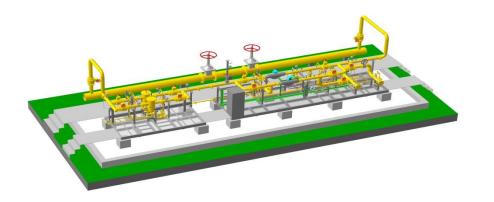
ГРПБ может быть оснащён узлом учёта газа при необходимости.

Максимальная ремонтопригодность: возможность замены узлов и составных частей ГРПБ с последующим их ремонтом.

Оборудование проходит заводские, приёмные и сдаточные испытания согласно НД и по согласованным с Заказчиком программами испытаний (при необходимости).

Все средства автоматизации имеют сертификаты Госстандарта РФ об утверждении типа средств измерений и разрешение Ростехнадзора на применение, а также протоколы заводских испытаний.

Осуществляем проектирование, изготовление, проведение испытаний, пуско-наладочные работы.


СИК ШФЛУ, СУГ, ГК (КОММЕРЧЕСКИЙ УЧЕТ)

Основной состав:

блок фильтров

- блок измерительных линий
- узел подключения передвижной
- поверочной установки
- система отбор проб ШФЛУ ГОСТ Р 55609-2013 Отбор проб ГК, СУГ и ШФЛУ.
- блок операторный с системой СОИ

СИСТЕМА ИЗМЕРЕНИЯ КОЛИЧЕСТВА НЕФТИ

БАКС

Назначение:

- Определение массы и объема методом прямых или косвенных потоковых измерений;
- Измерение технологических и качественных параметров;
- Сбор, обработка, отображение и регистрация результатов измерений.

Варианты размещения:

в блочно-модульных зданиях

в блок-боксах

на открытой площадке

СИСТЕМА ИЗМЕРЕНИЯ КОЛИЧЕСТВА НЕФТИ

Блок фильтров (БФ) - очистка от механических примесей.

Фильтры с быстросъемной крышкой с датчиком перепада давления для контроля загрязнения.

Блок измерительных линий (БИЛ) - измерение расхода и контроль параметров нефти.

Расходомеры массовые, объемные;

Датчики температуры и давления;

Трубопроводная обвязка для проведения КМХ;

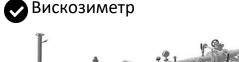
Блок поверочной установки (БПУ) - КМХ и поверка средств измерений на месте эксплуатации.

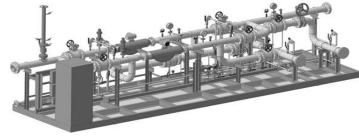
- Компакт-прувер или ТПУ с обвязкой и эталонной поверочной установкой;
- Стационарное или мобильное исполнение

Блок измерения качества нефти (БИК) - измерение параметров качества.

Плотномеры

Влагомеры


Солемер


- Автоматический и ручной пробоотборники

Датчики температуры и давления

Система сбора и обработки информации (СОИ)

автоматизированный сбор, обработка, отображение, регистрация информации по учету и управлению СИКН.

БЛОЧНАЯ НАСОСНАЯ СТАНЦИЯ (БНС)

- ✓ Блочная кустовая насосная станция (БКНС);
- ✓ Насосная перекачивающая станция (НПС);
- Мультифазная насосная станция (МФНС);
- Дожимная насосная станция (ДНС);
- ✓ Насосная станция пожаротушения (НСПТ);
- ✓ Станция внешней откачки (СВО).

Типовой состав

- ✓ насосные агрегаты;
- √ блок фильтров;
- ✓ виброкомпенсаторы;
- ✓ станции управления;
- ✓ площадки обслуживания;
- ✓ грузоподъемные механизмы;
- выкатные устройства;
- ✓ средства автоматизации и КИП;
- ✓ трубная и кабельная обвязка;
- запорная и запорно-регулирующая арматура;
- ✓ расходомеры.

Дополнительные возможности:

- Дополнительная комплектация насосных агрегатов устройствами контроля управления и сигнализации по отдельному требованию заказчика.
- ✓ Изготовление совмещенного аппаратурного блока с блоком щита станции управления (ЩСУ).
- Блочно-модульное здание насосной станции

АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ

 ✓ Проведение аудита объектов автоматизации;

- ✓ Проектирование АСУ ТП и КИПиА;
- ✓ Разработка по АСУ ТП (SCADA/HMI, контроллер);
- Разработка программных модулей;
- Разработка метрологических программно-аппаратных комплексов;
- ✓ Разработка шкафов АСУ ТП (схем ЕСКД), паспорта;
- ✓ Проведение строительно-монтажных и пусконаладочных работ;
- Проведение предварительных испытаний;
- ✓ Ввод объектов в промышленную эксплуатацию.

СКБ «Промавтоматика»

ALLEN BRADLEY

SIEMENS

OOO «TREI»

YOKOGAWA

EMERSON

Преимущества использования автоматизированных промышленных комплексов:

Уменьшение влияния человеческого фактора на производстве, освобождение работников от обязанности выполнять опасные и трудоёмкие операции;

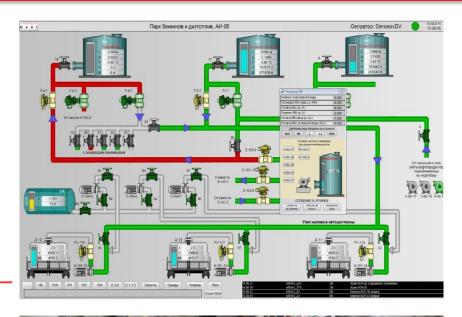
Автоматическое регулирование параметров технологических процессов;

Контроль производства в режиме реального времени;

Наглядное представление технологических процессов на компьютере оператора;

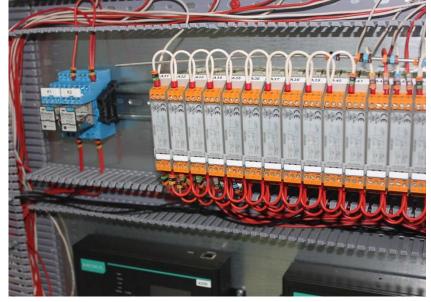
Возможность использовать получаемые данные для оптимизации технологических процессов;

Сокращение издержек, повышение эффективности производства;

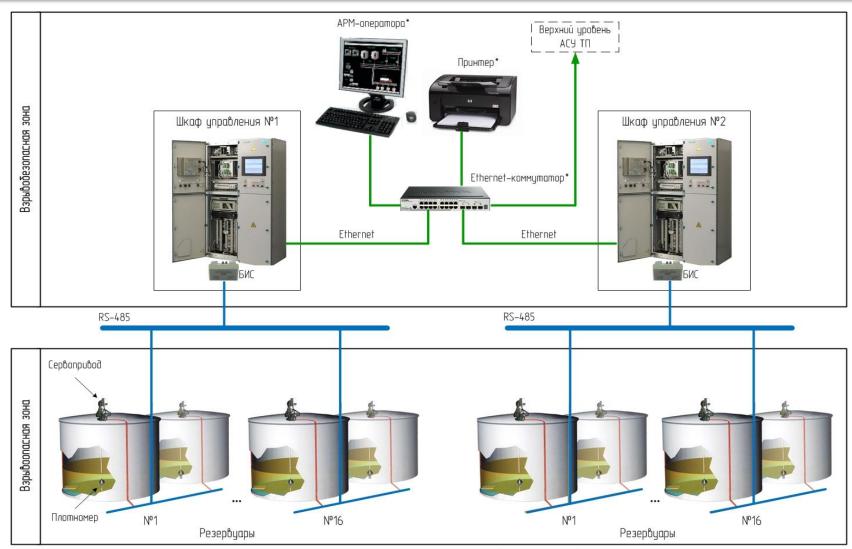


Немедленный **запуск аварийных протоколов** в случае чрезвычайных ситуаций

hinhinhind


ПРИМЕР МНЕМОСХЕМ И КОНСТРУКТИВА ШКАФОВ АВТОМАТИКИ

БАКС



СТРУКТУРНАЯ СХЕМА СИСТЕМЫ ИЗМЕРЕНИЯ МАССЫ И ОБЪЕМА НЕФТЕПРОДУКТОВ

Примечание: К одному шкафу управления, подключать не более 16 резервуаров

* по согласованию с Заказчиком

Список сокращений:

APM — автоматизированное рабочее место

БИС — барьеры искрозащиты

ООО НТФ «БАКС»

Адрес: 443022, г. Самара, Пр-т Кирова, 22

Телефон: +7 (846) 267-38-12 (-13 / -14)

E-mail: info@bacs.ru, kom@bacs.ru

Web: www.bacs.ru