УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «01» августа 2025 г. № 1551

Лист № 1 Всего листов 45

Регистрационный № 96017-25

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Газоанализаторы BACS

Назначение средства измерений

Газоанализаторы BACS (далее — газоанализаторы) предназначены для измерения и передачи информации о содержании горючих газов и паров горючих жидкостей, токсичных газов и кислорода в воздухе рабочей зоны, технологических газовых средах, промышленных помещений и открытых пространств промышленных объектов, трубопроводах и воздуховодах; и подачи предупредительной сигнализации о превышении установленных пороговых значений.

Описание средства измерений

Принцип действия газоанализаторов определяется типом используемого сенсора:

- термокаталитические (LEL), основанные на определении теплового эффекта реакции определяемого газа с другими веществами, протекающей при участии катализатора;
- электрохимические (EC), основанные на измерении электрического тока, вырабатываемого электрохимической ячейкой в результате химической реакции с участием молекул определяемого компонента;
- инфракрасные (IR), основанные на селективном поглощении молекулами определяемого компонента электромагнитного излучения и измерении интенсивности инфракрасного излучения после прохождения им среды, содержащей определяемый компонент;
- фотоионизационные (PID), основанные на ионизации молекул органических и неорганических веществ фотонами высокой энергии и измерении возникающего при этом тока между измерительными пластинами. В качестве источников ионизации используются криптоновая ультрафиолетовая или аргоновая лампа;
- полупроводниковые (MEMS), основанные на определении изменения электрического сопротивления полупроводникового элемента, вызванного адсорбцией на нем молекул определяемого газа.

Обозначения модификации сенсоров имеют постфикс:

Т – сенсор со сниженной погрешностью измерения;

Д – сенсор, имеющий дифференцированный по единицам измерения диапазон измерений, позволяющий осуществлять контроль загазованности предельно допустимых концентраций в воздухе рабочей зоны и значений довзрывоопасных концентраций.

Газоанализаторы изготавливаются в следующих модификациях: SENSOR 01, SENSOR 02, SENSOR 03, PERSONAL MINI и PERSONAL PRO.

Газоанализаторы модификаций SENSOR 01, SENSOR 02, SENSOR 03 являются стационарными газоанализаторами и представляют собой датчик, состоящий из корпуса и газочувствительного сенсора. Корпус газоанализатора выполнен в металлическом корпусе (алюминиевый сплав или нержавеющая сталь) с крышкой. Внутри корпуса располагается электронный модуль газоанализатора. Корпус газоанализатора имеет резьбовые вводы для кабелей/кабелепроводов, расположенные по обеим сторонам верхней части корпуса

газоанализатора, предназначенные для подключения источника питания, сигнального выхода. Нижний ввод обеспечивает подключение сенсора.

Газоанализаторы модификации SENSOR 02 имеют исполнения:

- газоанализатор модификации SENSOR 02– предназначен для установки одного сенсора MX-SMART. Исполнение имеет маркировку взрывозащиты типа «ia».
- газоанализатор модификации SENSOR 02 предназначен для установки одного сенсора MX-SMART. Исполнение имеет взрывозащищенную оболочку типа «d».
- газоанализатор модификации SENSOR 02 предназначен для установки не более двух сенсоров MX-SMART. Исполнение имеет взрывозащищенную оболочку типа «d». Для идентификации исполнения к общему наименованию добавляется постфикс «-01».
- газоанализатор модификации SENSOR 02 может комплектоваться с газоанализаторами модификации SENSOR 03. Количество одновременно подключаемых газоанализаторов не более четырех. Исполнение имеет взрывозащищенную оболочку типа «d» Для идентификации исполнения к общему наименованию добавляется постфикс «-02».

Конструктивно газоанализаторы модификации SENSOR 03 выпускаются в 4 исполнениях:

- выходной сигнал только от 4 до 20 мА. Для идентификации исполнения к общему наименованию добавляется постфикс «-01»;
- выходной сигнал цифровой, протокол MODBUS RTU (RS 485). Для идентификации исполнения к общему наименованию добавляется постфикс «-02»;
- милливольтовый выходной сигнал, мостовая схема подключения. Для идентификации исполнения к общему наименованию добавляется постфикс «-03»;
- верхний предел температуры плюс $165\,^{\circ}$ С, милливольтовый выходной сигнал, мостовая схема подключения. Для идентификации исполнения к общему наименованию добавляется постфикс «-04».

Модификации отличаются друг от друга типом и количеством выходных сигналов, диапазоном эксплуатации по температуре окружающей среды и исполнением в части взрывозащиты.

Газоанализаторы модификаций PERSONAL MINI (имеют 1 сенсор) и PERSONAL PRO (от 1 до 4 сенсоров) являются портативными газоанализаторами и состоят из корпуса, изготовленного из полимерного материала со сплавом из термопластичного эластомера. Внутри корпуса изделия устанавливается плата с элементами электронной схемы изделия, сенсоры, фильтры сенсоров, элементы питания, дисплей. Изделие оснащается ЖК-дисплеем, кнопками управления, звуковой и световой сигнализацией.

Способ отбора пробы – диффузионный.

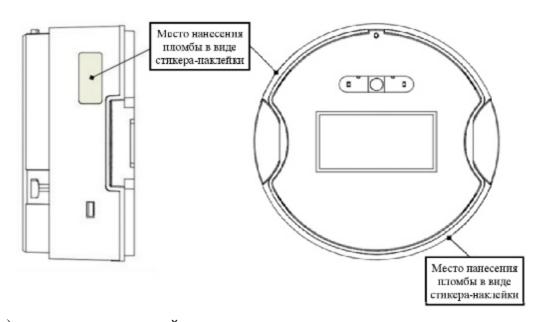
По устойчивости и прочности к воздействию температуры и влажности окружающего воздуха газоанализаторы соответствуют исполнению Д3 по ГОСТ Р 52931-2008.

Газоанализаторы могут использоваться в составе газоаналитических систем или в качестве самостоятельного изделия.

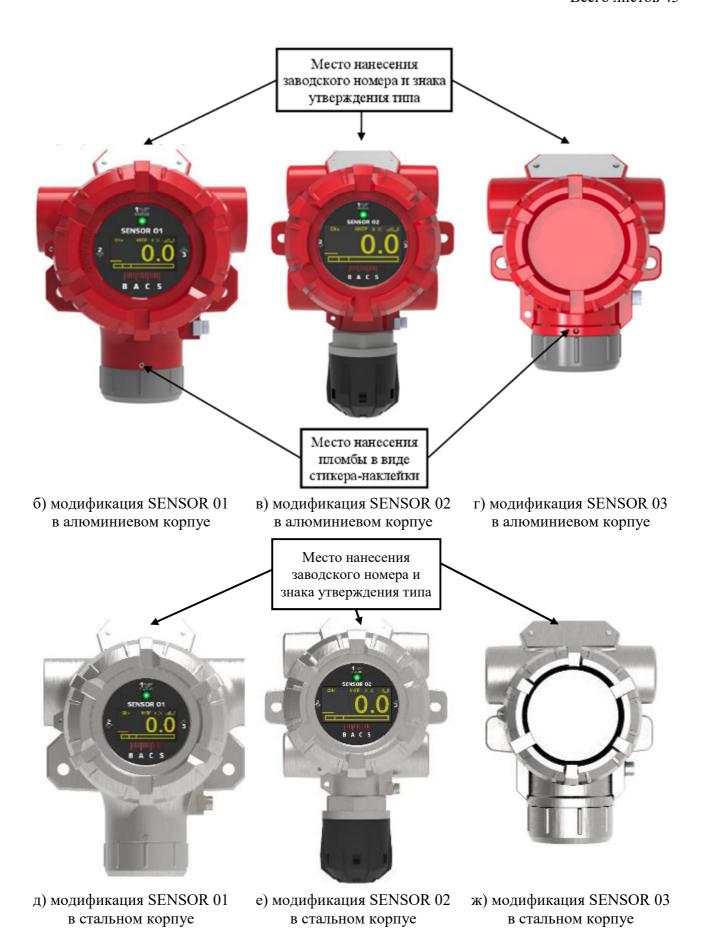
Газоанализаторы обеспечивают выполнение следующих функций:

- измерение массовой концентрации и (или) объёмной доли горючих газов, довзрывоопасной концентрации совокупности горючих углеводородных газов и паров горючих жидкостей (в том числе образованных в результате испарения горючих жидкостей, таких как керосин, бензин, дизельное топливо), летучих органических соединений, токсичных газов довзрывоопасных концентраций (ДВК) (по ГОСТ 31610.20-1-2020) и предельно допустимых концентраций (ПДК) (по СанПиН 1.2.3685-21);
- выдачу унифицированного токового сигнала от 4 до 20 мА, пропорционального измеряемой концентрации (4 мА соответствует нижнему пределу измерений, 20 мА соответствует диапазону показаний или может соответствовать любой точке, не превышающей диапазон показаний задается пользователем);
 - выдачу цифровых сигналов по протоколу HART;

- выдачу цифровых сигналов по интерфейсу RS-485 (с протоколом MODBUS RTU):
- выдачу трех дискретных сигналов (ПОРОГ1, ПОРОГ2, ПОРОГ3/АВАРИЯ);
- передачу информации с помощью модулей беспроводной связи (частота 2,4 ГГц или 868 МГц по протоколам MXair, LoRaWAN, LoRa, E-WIRE) (опционально);
 - автономное питание (опционально);
 - передачу данных по Bluetooth (опционально).

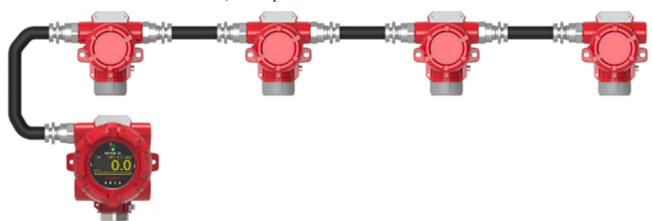

Нанесение знака поверки на средство измерений не предусмотрено.

Для защиты от несанкционированного доступа предусмотрено пломбирование. Пломбирование осуществляется с помощью стикер-наклейки, которая наносится на электронный модуль (для мод. SENSOR 01, SENSOR 02, SENSOR 03) и на задний корпус газоанализатора (для мод. PERSONAL MINI, PERSONAL PRO).


Общий вид газоанализаторов с указанием мест пломбировки, мест нанесения знака утверждения типа, заводского номера представлен на рисунках 1 и 2.

Заводской номер в виде цифро-буквенного обозначения, состоящего из арабских цифр и букв латинского алфавита, наносится лазерной гравировкой или ударно-точечным методом на маркировочную табличку (рисунок 3) в месте, указанном на рисунках 1 и 2.

Для газоанализатора модификации SENSOR 02-02 заводской номер наносится на электронный модуль и на присоединяемые к нему газоанализаторы модификации SENSOR 03 (на SENSOR 03 указывается заводской номер и дублируется заводской номер электронного модуля SENSOR 02-02).



а) расположение гарантийных наклеек на электронном модуле газоанализатора

з) модификация SENSOR 02-01

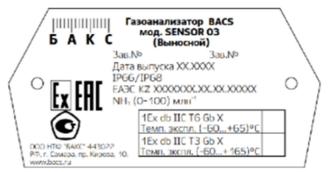
и) модификация SENSOR 02-02

Рисунок 1 — Общий вид стационарных газоанализаторов BACS с указанием мест пломбировки, мест нанесения знака утверждения типа, заводского номера

а) модификация PERSONAL MINI

б) модификация PERSONAL PRO

Рисунок 2 – Общий вид портативных газоанализаторов BACS с указанием мест пломбировки, мест нанесения знака утверждения типа, заводского номера



а) для модификации SENSOR 01

в) для модификации SENSOR 03 при подключении к электронному модулю SENSOR 02-02

г) для модификации SENSOR 03

д) для модификации PERSONAL PRO

e) для модификации PERSONAL MINI

Рисунок 3 – Маркировочная табличка

Программное обеспечение

Газоанализаторы имеют встроенное программное обеспечение (ПО), разработанное изготовителем. Встроенное ПО обеспечивает непрерывное автоматическое измерение концентрации, контроль за превышением установленных пороговых значений, непрерывную самодиагностику аппаратной части газоанализатора, преобразование измеряемой концентрации в унифицированный токовый сигнал и выдачу информации по цифровым каналам связи.

Встроенное ПО обеспечивает выполнение следующих функций:

- калибровка токовой петли с помощью магнитного ключа;
- автоматическое переключение между диапазонами измерений в газоанализаторах с модификацией сенсоров, имеющих постфикс «Д»;
 - возможность осуществления поверки с помощью газа-эквивалента;
 - возможность отображения концентрации газа в информационном канале;
- возможность отображения двух единиц измерений концентрации определяемого компонента;
- возможность замены Smart-сенсора, не выключая прибор, и его автоматическое определение;
- генерация статусных токов (2 мА Прогрев, 1,5 мА обрыв сенсора, 3 мА сервисный режим или настройка по ГСО, 23 мА превышение диапазона показаний).

Уровень защиты ΠO от непреднамеренных и преднамеренных изменений соответствует уровню «высокий» согласно P 50.2.077-2014.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1 – Идентификационные данные ПО

И получения получи полу	Значение				
Идентификационные данные	SENSOR	SENSOR	SENSOR	PERSONAL	PERSONAL
(признаки)	01	02	03*	MINI	PRO
Идентификационное наименование ПО	S01.bin	S02.bin	S03.bin	PM.bin	PP.bin
Номер версии (идентификационный номер) ПО, не ниже	0.01				
* Не распространяется на модификации SENSOR 03-03, SENSOR 03-04.					

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики газоанализаторов с инфракрасным сенсором

для контроля углеводородов, оксида диазота и диоксида углерода (IR)

Определяемый компонент ¹⁾	модификация сенсора	Диапазон и г измерений ²⁾ опреде.	поддиапазоны ображания об	Пределы допускаемой основной абсолютной погрешности
1	2		3	4
	IR-CH ₄ -100	(от 0 до 10	о 4,4 % 0 % НКПР) 9277 мг/м³)	±0,22 % (±5 % ΗΚΠΡ) (±1463 ΜΓ/M ³)
Метан СН4	IR-CH ₄ -50T	(от 0 до 50	o 2,2 % O % НКПР) 4638 мг/м³)	±0,13 % (±3 % НКПР) (±878 мг/м ³)
	IR-CH ₄ -50	от 0 до 2,2 % (от 0 до 50 % НКПР) (от 0 до 14638 мг/м ³)		±0,22 % (±5 % НКПР) (±1463 мг/м ³)
	IR-CH ₄ -100%	от 0 до	100 %	±(0,1+0,049·X) %
	IR-CH ₄ -7000	от 0 до 7000 _{мг/м} ³	от 0 до 500 мг/м 3 включ.	±50 мг/м ³
			св. 500 до 7000 мг/м ³	$\pm (0.152 \cdot X - 15.6) \text{ M}\Gamma/\text{M}^3$
	ID CH 2000	от 0 до 3000	от 0 до 500 мг/м 3 включ.	± 50 мг/м 3
Метан СН4	IK-CH4-3000	IR-CH ₄ -3000 $\text{Olombox of Joseph of Josep$	св.500 до 3000 мг/м ³	$\pm (0,152 \cdot X - 15,6) \text{ MG/m}^3$
Wierun C114		от 0 до 3000 мг/м^3		$\pm (0.25 \cdot X) \text{ M}\Gamma/\text{M}^3$
	IR-CH ₄ -3000Д ¹⁾	от 3000 до	29277 мг/м ³	$\pm 1463 \text{ M}\Gamma/\text{M}^3$
		(от 10,2 до 100 % НКПР)		(±5 % HKΠP)
		от 0 до 7000 мг/м^3		$\pm (0.25 \cdot X) \text{ M}\text{F/M}^3$
	IR-CH ₄ -7000Д ¹⁾	от 7000 до 29277 мг/м ³ (от 23,9 до 100 % НКПР)		± 1463 мг/м ³ (±5 % НКПР)
	IR-C ₂ H ₄ -100		o 2,3 % 0 % НКПР)	±0,12 % (±5 % ΗΚΠΡ)
Этилен С ₂ Н ₄	IR-C ₂ H ₄ -50		1,15 %) % НКПР)	±0,12 % (±5 % ΗΚΠΡ)

Продолжение таб	2		3	4
1	<u> </u>			±0,085 %
	IR-C ₃ H ₈ -100	0 до 1,7 % (от 0 до 100 % НКПР)		±0,085 % (±5 % HKΠP)
	110 03118-100	`	1393 мг/м ³)	$(\pm 1569 \text{ MF/M}^3)$
			0,85 %	±0,051 %
	IR-C ₃ H ₈ -50T) % НКПР)	(±3 % HKΠP)
	222 23210 201	`	5696 мг/м ³)	$(\pm 941 \text{ MF/M}^3)$
		`	0,85 %	±0,085 %
	$IR-C_3H_8-50$) % НКПР)	(±5 % HKΠP)
			5696 мг/м ³)	$(\pm 1569 \text{ M}\Gamma/\text{M}^3)$
	IR-C ₃ H ₈ -100%		100 %	±(0,1+0,049·X) %
			от 0 до 500	±50 мг/м ³
		от 0 до 7000	$M\Gamma/M^3$ включ.	
Пропан С ₃ Н ₈	$IR-C_3H_8-7000$	$M\Gamma/M^3$	св. 500 до	
		1,117,111	7000 мг/м ³	$\pm (0.152 \cdot X - 15.6) \text{ M}\Gamma/\text{M}^3$
			от 0 до 500	
		от 0 до 3000	мг/м ³ включ.	$\pm 50 \text{ M}\Gamma/\text{M}^3$
	$IR-C_3H_8-3000$	мг/м ³	св. 500 до	
		MII/MI	3000 мг/м ³	$\pm (0.152 \cdot X - 15.6) \text{ M}\Gamma/\text{M}^3$
		от О по 3		$\pm (0.25 \cdot X) \text{ M}\Gamma/\text{M}^3$
	IR-C ₃ H ₈ -3000Д ¹⁾	от 0 до 3000 мг/м ³ от 3000 до 31393 мг/м ³		$\pm (0.25 \text{ A}) \text{ MI/M}$ $\pm 1569 \text{ MF/M}^3$
		(от 9,5 до 100 % НКПР)		± 1309 MI7M (± 5 % HKΠP)
	IR-C ₃ H ₈ -7000Д ¹⁾	от 0 до 7000 мг/м ³		$\pm (0.25 \cdot X) \text{ MIT/M}^3$
			31393 мг/м ³	$\pm 1569 \text{ M}\Gamma/\text{M}^3$
		(от 22,3 до 100 % НКПР)		(±5 % НКПР)
		от 0 до 1,4 %		±0,07 %
	$IR-C_4H_{10}-100$	(от 0 до 100 % НКПР)		(±5 % HKΠP)
н-бутан С ₄ Н ₁₀		(от 0 до 34380 мг/м³)		$(\pm 1719 \text{ M}\Gamma/\text{M}^3)$
, 10		от 0 до 0,7 %		±0,07 %
	$IR-C_4H_{10}-50$	(от 0 до 50 % НКПР)		(±5 % HKПР)
		(от 0 до 17190 мг/м ³) от 0 до 1,6 %		$(\pm 1719 \text{ M}\Gamma/\text{M}^3)$
	$IR-C_4H_8-100$, ,		±0,08 %
1-бутен C ₄ H ₈		(от 0 до 100 % НКПР)		(±5 % HKΠP)
, ,	IR-C ₄ H ₈ -50	от 0 до 0,8 %		±0,08 %
		(от 0 до 50 % НКПР)		(±5 % НКПР)
2 мотинироном	IR-i-C ₄ H ₁₀ -100	, ,	1,30 %	±0,065 %
2-метилпропан (изобутан)	111 1 0 41110 100	(от 0 до 10	0 % НКПР)	(±5 % НКПР)
i-C ₄ H ₁₀	IR-i-C ₄ H ₁₀ -50	от 0 до	0,65 %	±0,065 %
1-041110	110-1-041110-30	(от 0 до 50) % НКПР)	(±5 % НКПР)
	ID C II 100	от 0 де	o 1,1 %	±0,055 %
и пантон С-Ц	$IR-C_5H_{12}-100$	(от 0 до 100 % НКПР)		(±5 % НКПР)
н-пентан С ₅ Н ₁₂	IR-C ₅ H ₁₂ -50	от 0 до 0,55 %		±0,055 %
	IK-C51112-30	(от 0 до 50 % НКПР)		(±5 % ΗΚΠΡ)
	IR-C ₅ H ₁₀ -100		o 1,4 %	±0,07 %
Циклопентан	114-031110-100		0 % НКПР)	(±5 % НКПР)
C_5H_{10}	$IR-C_5H_{10}-50$		0 0,7 %	±0,07 %
	116 031110-20	(от 0 до 50) % НКПР)	(±5 % HKΠP)

Продолжение таб	<u> 2</u>	3	Α
1	<u> </u>		4
и-гемсан С.Н.	$IR-C_6H_{14}-100$	от 0 до 1,0 % (от 0 до 100 % НКПР)	±0,05 % (±5 % ΗΚΠΡ)
н-гексан С ₆ Н ₁₄	ID C II 70	от 0 до 0,5 %	±0,05 %
	$IR-C_6H_{14}-50$	(от 0 до 50 % НКПР)	(±5 % НКПР)
	ID C.H., 100	от 0 до 1,0 %	±0,05 %
Циклогексан	IR-C ₆ H ₁₂ -100	(от 0 до 100 % НКПР)	(±5 % НКПР)
C_6H_{12}	IR-C ₆ H ₁₂ -50	от 0 до 0,5 %	±0,05 %
	IK-C61112-30	(от 0 до 50 % НКПР)	(±5 % НКПР)
		от 0 до 2,4 %	±0,12 %
	$IR-C_2H_6-100$	(от 0 до 100 % НКПР)	(±5 % НКПР)
Этан С ₂ Н ₆		(от 0 до 29938 мг/м ³)	$(\pm 1497 \text{ M}\Gamma/\text{M}^3)$
J1411 C2116		от 0 до 1,2 %	±0,12 %
	$IR-C_2H_6-50$	(от 0 до 50 % НКПР)	(±5 % НКПР)
		(от 0 до 14969 мг/м ³)	$(\pm 1497 \text{ M}\Gamma/\text{M}^3)$
	IR-CH ₃ OH-100	от 0 до 6,0 %	±0,3 %
Метанол		(от 0 до 100 % НКПР)	(±5 % НКПР)
CH ₃ OH	IR-CH₃OH-50	от 0 до 3,0 %	±0,3 %
_		(от 0 до 50 % НКПР)	(±5 % HKΠP)
		от 0 до 1,2 %	±0,06 %
	$IR-C_6H_6-100$	(от 0 до 100 % НКПР)	(±5 % HKΠP)
Бензол С ₆ Н ₆	IR-C ₆ H ₆ -50	от 0 до 0,6 %	±0,06 %
		(от 0 до 50 % НКПР)	(±5 % HKΠP)
		от 0 до 2,0 %	±0,1 %
Пропилен	$IR-C_3H_6-100$	(от 0 до 100 % НКПР)	(±5 % HKΠP)
(пропен) С ₃ Н ₆	ID C II 50	от 0 до 1,0 %	±0,1 %
	$IR-C_3H_6-50$	(от 0 до 50 % НКПР)	(±5 % НКПР)
Этанол		от 0 до 1,5 %	±0,16 %
Этанол С ₂ Н ₅ ОН	$IR-C_2H_5OH-48,3$	(от 0 до 48,3 % НКПР)	±0,16 % (±5 % ΗΚΠΡ)
C2113O11		· · · · · · · · · · · · · · · · · · ·	,
н-гептан С7Н16	IR-C ₇ H ₁₆ -100	от 0 до 0,85 %	± 0,042 %
		(от 0 до 100 % НКПР)	(±5 % HKΠP)
н-гептан С ₇ Н ₁₆	IR-C ₇ H ₁₆ -50	от 0 до 0,425 %	±0,042 %
. 10		(от 0 до 50 % НКПР)	(±5 % HKΠP)
Organia describedado	IR-C ₂ H ₄ O-100	от 0 до 2,6 %	±0,13 %
Оксид этилена С ₂ H ₄ O		(от 0 до 100 % НКПР) от 0 до 1,3 %	(±5 % HKΠP) ±0,13 %
C2114O	$IR-C_2H_4O-50$	(от 0 до 50 % НКПР)	±0,13 % (±5 % ΗΚΠΡ)
		(от о до 50 /0 ПКПП)	(±5 /0 IIIXIII)

Продолжение тао	<u> 2</u>		3	4
-	<i></i>		от 0 до 1000	
	ID GO 2000	от 0 до 3000	млн ⁻¹ включ.	± 100 млн $^{-1}$
	IR-CO ₂ -3000	млн ⁻¹	св. 1000 до	+ (0.1 3 7) 0/
			3000 млн ⁻¹	$\pm (0,1 \cdot X) \%$
			от 0 до 1000	± 100 млн $^{-1}$
	IR-CO ₂ -5000	от 0 до 5000	млн ⁻¹ включ.	±100 MJH
	IK-CO ₂ -3000	млн ⁻¹	св. 1000 до	$\pm (0,1 \cdot X) \%$
_			5000 млн ⁻¹	_(0,1 11) / 0
			от 0 до 0,1 %	±0,01 %
	IR-CO ₂ -1	от 0 до 1,0 %	ВКЛЮЧ.	<u> </u>
_			св. 0,1 до 1,0 %	$\pm (0,1 \cdot X) \%$
Диоксид			от 0 до 0,5 %	
углерода СО2			включ.	±0,01 %
	$IR-CO_2-2,5$	от 0 до 2,5 %	св. 0,5 до 2,5	
			% GB: 0,5 AO 2,5 %	$\pm (0,1 \cdot X) \%$
			от 0 до 2,5 %	.0.05.0/
	ID CO 5	0500/	включ.	$\pm 0{,}05~\%$
	IR-CO ₂ -5 от 0 до	от 0 до 5,0 %	св. 2,5 до 5,0	+(0.1 V) 0/
			%	$\pm (0,1 \cdot X) \%$
	IR-CO ₂ -20	от 0 до 20,0	от 0 до 1,0 %	±0,1 %
			включ.	±0,1 70
			св. 1,0 до 20,0	+(0.1. V) 0/
			%	$\pm (0,1 \cdot X) \%$
2 прополон		от 0 до	1,25 %	±0,13 %
2-пропанон (ацетон) C ₃ H ₆ O	$IR-C_3H_6O-50$		0 % НКПР)	±0,13 /0 (±5 % HKΠP)
(ацегоп) С3116О		(от о до ж	5 70 HKHH)	(±3 /0 HKHH)
2-метилпропен	IR-i-C ₄ H ₈ -100	от 0 д	o 1,6 %	$\pm 0{,}08~\%$
(изобутилен)	1118-100	(от 0 до 10	0 % НКПР)	$(\pm 5 \% \text{ HK}\Pi\text{P})$
i-C ₄ H ₈	IR-i-C ₄ H ₈ -50	от 0 д	o 0,8 %	±0,08 %
40	IK-1-C4118-30	`	0 % НКПР)	(±5 % HKΠP)
2-метил-1,3-	IR-C ₅ H ₈ -100	, ,	o 1,7 %	$\pm 0{,}085~\%$
бутадиен	IK C3116 100	,	0 % НКПР)	(±5 % HKΠP)
(изопрен) С ₅ Н ₈	IR-C ₅ H ₈ -50		0,85 %	±0,085 %
1) 5 0			0 % НКПР)	(±5 % HKΠP)
	IR-C ₂ H ₂ -100		2,30 %	±0,12 %
Ацетилен С ₂ Н ₂			0 % HKΠP)	(±5 % HKΠP)
	$IR-C_2H_2-50$	от 0 до 1,15 %		±0,12 % (±5 % ΗΚΠΡ)
Акрилонитрил		(от 0 до 50 % НКПР) от 0 до 1,4 %		±0,14 %
С ₃ Н ₃ N	$IR-C_3H_3N-50$		0 % НКПР)	±0,14 /0 (±5 % HKΠP)
C)11)11			o 1,0 %	±0,05 %
Метилбензол	$IR-C_7H_8-100$			(±5 % HKΠP)
(толуол) С7Н8	ID C II 50	(от 0 до 100 % НКПР) от 0 до 0,5 %		±0,05 %
	$IR-C_7H_8-50$	(от 0 до 50 % НКПР)		(±5 % HKΠP)
		(от 0 до 30	J 70 HKHP)	(±3 % HKHP)

Продолжение та	олицы 2		
1	2	3	4
Этилбензол $C_8 H_{10}$	IR-C ₈ H ₁₀ -37,5T	от 0 до 0,3 % (от 0 до 37,5 % НКПР)	±0,024 % (±3 % НКПР)
н-октан С ₈ Н ₁₈	IR-C ₈ H ₁₈ -50	от 0 до 0,4 % (от 0 до 50 % НКПР)	±0,04 % (±5 % ΗΚΠΡ)
2,2,4-	IR-i-C ₈ H ₁₈ -100	от 0 до 0,7 %	±0,035 %
триметилпента		(от 0 до 100 % НКПР)	(±5 % HKПР)
н (изооктан)	IR-i-C ₈ H ₁₈ -50	от 0 до 0,35 %	±0,035%
i-C ₈ H ₁₈		(от 0 до 50 % НКПР)	(±5 % HKПР)
Этилацетат	IR-C ₄ H ₈ O ₂ -50	от 0 до 1,0 %	±0,1 %
С ₄ H ₈ O ₂		(от 0 до 50 % НКПР)	(±5 % НКПР)
Бутилацетат	IR-C ₆ H ₁₂ O ₂ -25T	от 0 до 0,3 %	±0,036 %
С ₆ H ₁₂ O ₂		(от 0 до 25 % НКПР)	(±3 % НКПР)
1,3-бутадиен	IR-C ₄ H ₆ -50	от 0 до 0,7 %	±0,07 %
(дивинил) С ₄ Н ₆		(от 0 до 50 % НКПР)	(±5 % HKΠP)
1,2-дихлорэтан	IR-C ₂ H ₄ Cl ₂ -50	от 0 до 3,1 %	±0,31 %
С ₂ H ₄ Cl ₂		(от 0 до 50 % НКПР)	(±5 % HKΠP)
Диметилсульф	IR-C ₂ H ₆ S-50	от 0 до 1,1 %	±0,11 %
ид С ₂ H ₆ S		(от 0 до 50 % НКПР)	(±5 % НКПР)
1-гексен С ₆ H ₁₂	IR-C ₆ H ₁₂ -50	от 0 до 0,6 % (от 0 до 50 % НКПР)	±0,06 % (±5 % HKПР)
2-бутанол (втор-бутанол) sec-C ₄ H ₉ OH	IR-sec-C ₄ H ₉ OH- 31,2T	от 0 до 0,5 % (от 0 до 31,2 % НКПР)	±0,051 % (±3 % НКПР)
Винилхлорид	IR-C ₂ H ₃ Cl-50	от 0 до 1,8 %	±0,18 %
С ₂ H ₃ Cl		(от 0 до 50 % НКПР)	(±5 % ΗΚΠΡ)
Циклопропан	IR-C ₃ H ₆ -100	от 0 до 2,4 % (от 0 до 100 % НКПР)	±0,12 % (±5 % НКПР)
C_3H_6	IR-C ₃ H ₆ -50	от 0 до 1,2 % (от 0 до 50 % НКПР)	±0,12 % (±5 % НКПР)
Диметиловый	IR-C ₂ H ₆ O-50	от 0 до 1,35 %	±0,14 %
эфир С ₂ Н ₆ О		(от 0 до 50 % НКПР)	(±5 % НКПР)
Диэтиловый	IR-C ₄ H ₁₀ O-50	от 0 до 0,85 %	±0,085 %
эфир С ₄ H ₁₀ O		(от 0 до 50 % НКПР)	(±5 % НКПР)
Оксид пропилена С ₃ Н ₆ О	IR-C ₃ H ₆ O-50	от 0 до 0,95 % (от 0 до 50 % НКПР)	±0,095 % (±5 % НКПР)
Хлорбензол	IR-C ₆ H ₅ Cl-38,4T	от 0 до 0,5 %	±0,039 %
С ₆ H₅Cl		(от 0 до 38,4 % НКПР)	(±3 % НКПР)
2-бутанон (метилэтилкето н) С ₄ Н ₈ О	IR-C ₄ H ₈ O-50	от 0 до 0,75 % (от 0 до 50 % НКПР)	±0,075 % (±5 % НКПР)
2-метил-2- пропанол (трет-бутанол) tert-C ₄ H ₉ OH	IR-tert-C ₄ H ₉ OH-50	от 0 до 0,9 % (от 0 до 50 % НКПР)	±0,09 % (±5 % ΗΚΠΡ)

1 2 3				4
1 2-метокси-2-	<u> </u>		S	4
2-метокси-2- метилпропан (метилтретбути ловый эфир) tert-C ₅ H ₁₂ O	IR-tert-C ₅ H ₁₂ O-50		o 0,8 %) % НКПР)	±0,08 % (±5 % НКПР)
1,4- диметилбензол (п-ксилол) p-C ₈ H ₁₀	IR-p-C ₈ H ₁₀ -22,2T		o 0,2 % ,2 % НКПР)	±0,027 % (±3 % НКПР)
1,2- диметилбензол (о-ксилол) о-С ₈ H ₁₀	IR-o-C ₈ H ₁₀ -20T		o 0,2 %) % НКПР)	±0,03 % (±3 % НКПР)
2-пропанол (изопропанол) i-C ₃ H ₇ OH	IR-i-C ₃ H ₇ OH-50		o 1,0 %) % НКПР)	±0,1 % (±5 % НКПР)
Октен С ₈ Н ₁₆	IR-C ₈ H ₁₆ -33,3T	от 0 до 0,3 % (от 0 до 33,3 % НКПР)		±0,027 % (±3 % НКПР)
2-метилбутан (изопентан)	IR-i-C ₅ H ₁₂ -100	от 0 до 1,3 % (от 0 до 100 % НКПР)		±0,065 % (±5 % НКПР)
i-C ₅ H ₁₂	IR-i-C ₅ H ₁₂ -50	от 0 до 0,65 % (от 0 до 50 % НКПР)		±0,065 % (±5 % HKПР)
Метантиол (метилмеркапт ан) СН ₃ SH	IR-CH₃SH-50	от 0 до 2,05 % (от 0 до 50 % НКПР)		±0,21 % (±5 % НКПР)
Этантиол (этилмеркаптан) C_2H_5SH	IR-C ₂ H ₅ SH-50		o 1,4 %) % НКПР)	±0,14 % (±5 % НКПР)
Ацетонитрил C_2H_3N	IR-C ₂ H ₃ N-50		o 1,5 %) % НКПР)	±0,15 % (±5 % НКПР)
Диметилдисуль фид С ₂ H ₆ S ₂	IR-C ₂ H ₆ S ₂ -50	(от 0 до 50	0,55 % О % НКПР)	±0,055 % (±5 % НКПР)
	IR-ПНБ-50	от 0 до 50) % НКПР	±5 % НКПР
Бензин (по пропану)	IR-ПНБ-3500	от 0 до 3500 _{МГ/м} ³	от 0 до 100 мг/м ³ включ.	±25 мг/м ³
			св. 100 до 3500 мг/м ³	±(0,25·X) мг/м ³
	IR-ПНД-50	от 0 до 50) % НКПР	±5 % НКПР
Дизельное топливо (по пропану)	лливо ІВ-ПНЛ-3500	от 0 до 3500 _{МГ/м} ³	от 0 до 300 мг/м ³ включ.	±50 мг/м ³
(по пропану)		IVII / IVI	св. 300 до 3500 мг/м ³	$\pm (0,15\cdot X)$ мг/м ³

1 1	2		3	4
1	 IR-ПНК-50			±5 % HKΠP
-	IK-11HK-30	от 0 до 50) % НКПР	±3 % HKIIP
Керосин (по пропану)	IR-ПНК-3500	от 0 до 3500 _{мг/м} ³	от 0 до 300 мг/м ³ включ.	±50 мг/м ³
			св. 300 до 3500 мг/м ³	$\pm (0.15 \cdot X) \text{ M}\text{F/M}^3$
	IR-ПНУ-50	от 0 до 50) % НКПР	±5 % НКПР
Уайт-спирит (по пропану)	IR-ПНУ-3500	от 0 до 3500 мг/м ³	от 0 до 300 мг/м ³ включ.	±50 мг/м ³
			св. 300 до 3500 мг/м ³	$\pm (0,15\cdot X)$ мг/м ³
	IR-ΠH-50	от 0 до 50) % НКПР	±5 % НКПР
Пары нефти (по пропану)	IR-ПН-3500 от 0 до 3500 мг/м ³		от 0 до 300 $_{\mathrm{M\Gamma/M}^3}$ включ.	±50 мг/м ³
		св. 300 до 3500 мг/м ³	$\pm (0.15 \cdot X) \text{ MT/M}^3$	
П	IR-ΠHA-50	от 0 до 50) % НКПР	±5 % НКПР
Пары авиационного топлива (по пропану)	IR-ПНА-3500 от 0 до 350 мг/м ³	от 0 до 3500	от 0 до 300 $_{\mathrm{M}\Gamma/\mathrm{M}^3}$ включ.	± 50 Mγ/m ³
(no nponany)			св. 300 до 3500 мг/м ³	$\pm (0,15\cdot X) \text{ M}\Gamma/\text{M}^3$
Порил топпира	IR-ΠHP-50	от 0 до 50) % НКПР	±5 % НКПР
Пары топлива для реактивных двигателей (по пропану)	IR-ПНР-3500	от 0 но 3500	от 0 до 300 $_{\mathrm{M}\Gamma/\mathrm{M}^3}$ включ.	± 50 MΓ/M 3
		IVII / IVI	св. 300 до 3500 мг/м ³	$\pm (0,15\cdot X)$ мг/м ³
Скипидар (по пропану)	IR-ПНС-50	от 0 до 50 % НКПР		±5 % НКПР

продолжение так	2		3	4	
1	2			±0,22 %	
	$IR-C_xH_yCH_4-100$	от 0 до 4,4 % (от 0 до 100 % НКПР)		±0,22 /6 (±5 % HKΠP)	
			0 2,2 %	±0,22 %	
	$IR-C_xH_yCH_4-50$) % НКПР)	(±5 % HKΠP)	
		(7	от 0 до 500	,	
	ID G II GII 2000	от 0 до 3000	$M\Gamma/M^3$ включ.	± 50 MΓ/M ³	
	$IR-C_xH_yCH_4-3000$	$M\Gamma/M^3$	св. 500 до	+ (0.152 V 15.6) - c=/2-3	
Сумма			$3000 \ \text{мг/м}^3$	$\pm (0.152 \cdot X - 15.6) \text{ MT/M}^3$	
углеводородов			от 0 до 500	$\pm 50 \text{ M}\Gamma/\text{M}^3$	
C_xH_y	IR-C _x H _y CH ₄ -7000	от 0 до 7000	$M\Gamma/M^3$ включ.	±30 M1/M	
(по метану)	11X-Cx11yC114-7000	$M\Gamma/M^3$	св. 500 до	$\pm (0.152 \cdot X - 15.6) \text{ M} \Gamma/\text{M}^3$	
			7000 мг/м ³		
	IR-C _x H _y CH ₄ -		000 мг/м ³	$\pm (0.25 \cdot X) \text{ M}\Gamma/\text{M}^3$	
	$3000 extstyle \textstyle \textstyle 114$		29277 мг/м^3	$\pm 1463 \text{ M}\Gamma/\text{M}^3$	
	3000A		00 % НКПР)	(±5 % НКПР)	
	IR-С _х Н _у СН ₄ - 7000Д ⁵⁾	от 0 до 7000 мг/м^3		$\pm (0.25 \cdot X) \text{ M}\Gamma/\text{M}^3$	
		от 7000 до 29277 мг/м 3		$\pm 1463 \text{ M}\Gamma/\text{M}^3$	
	(OT 23,9		100 %НКПР)	(±5 % НКПР)	
	$IR-C_xH_yC_3H_8-100$	от 0 до 1,7 %		±0,085 %	
	11X-Cx11yC3118-100		0 % НКПР)	(±5 % НКПР)	
	$IR-C_xH_vC_3H_8-50$	от 0 до $0.85~\%$		±0,085 %	
	1K-C _X 11 _y C ₃ 11 ₈ -30	(от 0 до 50 % НКПР)		(±5 % НКПР)	
	IR-C _x H _y C ₃ H ₈ -3000		от 0 до 500	$\pm 50 \text{ M}\Gamma/\text{M}^3$	
Сумма		от 0 до 3000 _{мг/м³}	$M\Gamma/M^3$ включ.	±30 M1/M	
углеводородов	$11X - C_X 11_y C_3 11_8 - 3000$		св. 500 до	$\pm (0.152 \cdot X - 15.6) \text{ M}\Gamma/\text{M}^3$	
C_xH_y			3000 мг/м^3	$\pm (0,132 \cdot X - 13,0) \text{ MI/M}$	
(углеводороды			от 0 до 500	$\pm 50 \text{ MG/M}^3$	
алифатические	$IR-C_xH_yC_3H_8-7000$	от 0 до 7000	$M\Gamma/M^3$ включ.	±30 MI/M	
предельные	$1K-C_X\Pi_yC_3\Pi_8-7000$	$M\Gamma/M^3$	св. 500 до	$\pm (0.152 \cdot X - 15.6) \text{ M}\Gamma/\text{M}^3$	
C_2 - C_{10})			7000 мг/м^3	$\pm (0,132^{\circ}A - 13,0) \text{ MI/M}$	
(по пропану)	IR-C _x H _y C ₃ H ₈ -	от 0 до 3	000мг/м^3	$\pm (0.25 \cdot X) \text{ M}\Gamma/\text{M}^3$	
	$3000Д^{1)}$	от 3000 до	31393 мг/м^3	$\pm 1569 \text{ M}\text{F/M}^3$	
	3000Д /	(от 9,5 до 1	00 % НКПР)	(±5 % НКПР)	
	тренен	от 0 до 7	000мг/м^3	$\pm (0.25 \cdot X) \text{ M}\Gamma/\text{M}^3$	
	$IR-C_xH_yC_3H_8-7000Д^{1)}$	от 7000 до	31393 мг/м ³	$\pm 1569 \text{ M}\text{F/M}^3$	
	(от 22,3 до		.00 % НКПР)	(±5 % НКПР)	
Оксид азота (Оксид	IR-N ₂ O-1	от 0 до 1 %		± (0,15·X) %	
диазота) IK-N ₂ O-1 01 N ₂ O		01 0 2	QO 1 70	- (0,13 11) /0	

1	2	2	4
1	2	3	4
			•

1) – Газоанализаторы с определяемыми компонентами, не приведенными в таблице, но указанными в Руководстве по эксплуатации, могут применяться в качестве индикаторов для предварительной оценки содержания компонентов.

Газоанализаторы могут применяться для измерения концентрации других определяемых компонентов, указанных в руководстве по эксплуатации, при наличии аттестованных методик (методов) измерений (МИ) в соответствии с ГОСТ Р 8.563-2009.

- ²⁾ Результаты измерений концентрации определяемого компонента могут быть представлены в единицах массовой концентрации (мг/м³), в объемных долях (%, млн⁻¹) и % нижнего концентрированного предела распространения пламени (% НКПР).
 - 3) Диапазон показаний соответствует диапазону от 0 до 100 % НКПР;
 - $^{4)}$ Значения НКПР для горючих газов и паров в соответствии с ГОСТ 31610.20-1-2020.
- $^{5)}$ Газоанализаторы могут использоваться для контроля утечек горючих газов. Диапазоны измерений меняются автоматически в мг/м³ до 3000 (7000) мг/м³ после превышения этих значений отображаемая концентрация в % НКПР. Дискретность измерений при этом составляет: по метану 33,3 мг/м³, по пропану 37,0 мг/м³.
 - X Содержание определяемого компонента в газовой смеси, % (мг/м³).

Таблица 3 – Метрологические характеристики газоанализаторов с инфракрасным сенсором

для контроля фреонов (IR)

Определяемый компонент ¹⁾	Модификация сенсора	содержания	Диапазон измерений ²⁾ содержания определяемого компонента		целы каемой вной ности, %
	Солгори	объемной доли, млн ⁻¹	массовой концентрации 3 , мг/м 3	приведен ной к ВПИ ⁴⁾	относите льной
1	2	3	4	5	6
	IR-R134a-1000	от 0 до 100 включ.	от 0 до 424 включ.	±20	-
1,1,1,2- тетрафторэтан		св. 100 до 1000	св. 424 до 4240	-	±20
C ₂ H ₂ F ₄ (R134a)	IR-R134a-2000	от 0 до 100 включ.	от 0 до 424 включ.	±20	-
		св. 100 до 2000	св. 424 до 8480	-	±20
	IR-R125-1000	от 0 до 100 включ.	от 0 до 499 включ.	±20	-
Пентафторэтан С2HF5 (R125)		св. 100 до 1000	св. 499 до 4990	-	±20
	IR-R125-2000	от 0 до 100 включ.	от 0 до 499 включ.	±20	-
	1K-K123-2000	св. 100 до 2000	св. 499 до 9980	-	±20

Продолжение таоли 1	2	3	4	5	6
	IR-R22-1000	от 0 до 100 включ.	от 0 до 360 включ.	±20	-
Хлордифторметан CHClF ₂	IK-K22-1000	св. 100 до 1000	св. 360 до 3600	-	±20
(R22)	IR-R22-2000	от 0 до 100 включ.	от 0 до 360 включ.	±20	-
	IK-K22-2000	св. 100 до 2000	св. 360 до 7200	-	±20
	ID D112 1000	от 0 до 100 включ.	от 0 до 779 включ.	±20	-
1,2,2- трихлортрифторэ	IR-R113a-1000	св. 100 до 1000	св. 779 до 7790	-	±20
тан C ₂ Cl ₃ F ₃ (R113a)	IR-R113a- 2000	от 0 до 100 включ.	от 0 до 779 включ.	±20	-
	IR-R113a- 2000	св. 100 до 2000	св. 779 до 15580	-	±20
Дихлордифтормет	IR-R12-100	от 0 до 50 включ.	от 0 до 251 включ.	±20	-
ан CCl ₂ F ₂ (R12)	100	св. 50 до 100	св. 251 до 503	-	±20
1,1,1,2,3,3,3- гептафторпропан	ID D227 5000	от 0 до 1000 включ.	от 0 до 7070 включ.	±20	-
C ₃ HF ₇ (R227)	IR-R227a-5000	св. 1000 до 5000	св. 7070 до 35350	-	±20
, , ,	IR-SF ₆ -1000	от 0 до 500 включ.	от 0 до 3035 включ.	±20	-
Гексафторид серы		св. 500 до 1000	св. 3035 до 6070	-	±20
(SF_6)	IR-SF ₆ -1500	от 0 до 750 включ.	от 0 до 4553 включ.	±20	-
		св. 750 до 1500	св. 4553 до 9106	-	±20
	ID D122 1000	от 0 до 100 включ.	-	±20	-
2,2-дихлор-1,1,1-	IR-R123-1000	св. 100 до 1000	-	-	±20
трифторэтан (R123)	ID D122 2000	от 0 до 100 включ.	-	±20	-
	IR-R123-2000	св. 100 до 2000	-	-	±20
1,1,1-трифторэтан (R-143a)		от 0 до 100 включ.	-	±20	-
	IR-R143a-1000	св. 100 до 1000	-	-	±20

1	2	3	4	5	6
1,1,1-трифторэтан (R-143a)	IR-R143a-2000	от 0 до 100 включ.	-	±20	-
		св. 100 до 2000	-	1	±20
Трифторметан (фтороформ) R23	IR-R23-2000	от 0 до 100 включ.	1	±20	1
		св. 100 до 2000	1	1	±20
Дифторметан R-32	IR-R32-2000	от 0 до 100 включ.	-	±20	-
		св. 100 до 2000	-	-	±20

^{1) —} При контроле в воздухе рабочей зоны компонентов, указанных в Руководстве по эксплуатации, но не приведенных в таблице, газоанализаторы применяются в качестве

индикаторов для предварительной оценки содержания компонентов с последующим анализом по методикам (методам) измерений (МИ), разработанным и аттестованным в соответствии с ГОСТ Р 8.563-2009.

4) – ВПИ – верхний предел диапазона/поддиапазона измерений.

^{2) —} Диапазон показаний выходных сигналов соответствует диапазону измерений. В зависимости от заказа диапазон показаний может быть изменен, как при производстве, так и пользователем при помощи программного обеспечения (поставляется по заказу). Диапазон показаний не может быть меньше диапазона измерений.

 $^{^{3)}}$ — Пересчет значений объемной доли X, млн $^{-1}$, в массовую концентрацию C, мг/м 3 , проводят по формуле: $C=X\cdot M/Vm$, где C — массовая концентрация компонента, мг/м 3 ; M — молярная масса компонента, г/моль; Vm — молярный объем газа-разбавителя - воздуха, равный 24,06, при условиях (20 °C и 101,3 кПа по ГОСТ 12.1.005-88), дм 3 /моль.

Таблица 4 – Метрологические характеристики газоанализаторов с термокаталитическим сенсором (LEL)

сенсором (LEL)	1			
Определяемый компонент ¹⁾	Модификация сенсора	соде опред	н измерений ержания (еляемого онента ²⁾³⁾	Пределы допускаемой основной абсолютной погрешности
1	2	3		4
	LEL-CH ₄ -50T		до 2,2 % 50 % НКПР)	±0,13 % (±3 % НКПР)
Метан СН4	LEL-CH ₄ -50		до 2,2 % 50 % НКПР)	±0,22 % (±5 % НКПР)
Wician C114	LEL-CH ₄ -7000	от 0 до 7000 _{мг/м³}	от 0 до 500 мг/м ³ включ.	$\pm 50 \text{ M}\text{F/M}^3$ $\pm (0.152 \cdot \text{X} - 15.6)$
	LEL-C ₂ H ₄ -50T		7000 мг/м ³ до 1,15 % 50 % НКПР)	±0,069 % (±3 % HKΠP)
Этилен С2Н4	LEL-C ₂ H ₄ -50	от 0 д	до 1,15 % 50 % НКПР)	±0,12 % (±5 % HKΠP)
	LEL-C ₃ H ₈ -50T	от 0 д	цо 0,85 % 50 % НКПР)	±0,051 % (±3 % HKΠP)
Пропан С ₃ Н ₈	LEL-C ₃ H ₈ -50	от 0 д	10 0,85 % 50 % НКПР)	±0,085 % (±5 % HKΠP)
	LEL-C ₃ H ₈ -7000	от 0 до 7000 _{мг/м³}	от 0 до 500 мг/м ³ включ. св. 500 до	$\pm 50 \text{ M}\Gamma/\text{M}^3$ $\pm (0.152 \cdot \text{X} - 15.6)$
	LEL-C ₄ H ₁₀ -50T	от 0	7000 мг/м ³ до 0,7 %	±0,042 % (±3 % HKΠP)
н-бутан С ₄ Н ₁₀	LEL-C ₄ H ₁₀ -50	(от 0 до 50 % НКПР) от 0 до 0,7 % (от 0 до 50 % НКПР)		±0,07 % (±5 % HKΠP)
1-бутен С4Н8	LEL-C ₄ H ₈ -50T	от 0 до 0,8 % (от 0 до 50 % НКПР)		±0,048 % (±3 % НКПР)
1-0y10H C4118	LEL-C ₄ H ₈ -50	от 0 до 0,8 % (от 0 до 50 % НКПР)		±0,08 % (±5 % HKПР)
2-метилпропан	LEL-i-C ₄ H ₁₀ - 50T	(от 0 до	10 0,65 % 50 % НКПР)	±0,039 % (±3 % HKIIP)
(изобутан) і-С ₄ Н ₁₀	LEL-i-C ₄ H ₁₀ -50	(от 0 до	10 0,65 % 50 % НКПР)	±0,065 % (±5 % HKПР)
н-пентан С ₅ Н ₁₂	LEL-C ₅ H ₁₂ -50T	(от 0 до	цо 0,55 % 50 % НКПР)	±0,033 % (±3 % HKПР)
	LEL-C ₅ H ₁₂ -50	(от 0 до	цо 0,55 % 50 % НКПР)	±0,055 % (±5 % HKПР)
	LEL-C ₅ H ₁₀ -50T		до 0,7 % 50 % НКПР)	±0,042 % (±3 % ΗΚΠΡ)
Циклопентан C ₅ H ₁₀	LEL-C ₅ H ₁₀ -50		до 0,7 % 50 % НКПР)	±0,07 % (±5 % ΗΚΠΡ)

Продолжение таблицы 4	1 2		
1	2	3	4
	LEL-C ₆ H ₁₄ -50T	от 0 до 0,5 %	±0,03 %
н-гексан С ₆ Н ₁₄	LLL C01114 301	(от 0 до 50 % НКПР)	(±3 % НКПР)
11 1 CKCa11 C61114	LEL-C ₆ H ₁₄ -50	от 0 до 0,5 %	$\pm 0.05 \%$
	LEL-C61114-30	(от 0 до 50 % НКПР)	(±5 % НКПР)
	IEL CALL SOT	от 0 до 0,5 %	±0,03 %
Пиклороком С П	LEL-C ₆ H ₁₂ -50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
Циклогексан C ₆ H ₁₂	LEL C II 50	от 0 до 0,5 %	±0,05 %
	LEL-C ₆ H ₁₂ -50	(от 0 до 50 % НКПР)	(±5 % НКПР)
	LEL CH COT	от 0 до 1,2 %	±0,072 %
	LEL-C ₂ H ₆ -50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
Этан C_2H_6		от 0 до 1,2 %	±0,12 %
	LEL-C ₂ H ₆ -50	(от 0 до 50 % НКПР)	(±5 % HKΠP)
	LEL-CH ₃ OH-	от 0 до 3,0 %	±0,18 %
	50T	(от 0 до 50 % НКПР)	(±3 % HKΠP)
Метанол СН ₃ ОН	LEL-CH ₃ OH-	от 0 до 3,0 %	±0,3 %
	50	(от 0 до 50 % НКПР)	±0,5 % (±5 % HKΠP)
		от 0 до 0,6 %	±0,036 %
	$LEL-C_6H_6-50T$	(от 0 до 50 % НКПР)	±0,030 // (±3 % ΗΚΠΡ)
Бензол С ₆ Н ₆		/	/
	LEL-C ₆ H ₆ -50	от 0 до 0,6 %	±0,06 %
		(от 0 до 50 % НКПР)	(±5 % HKΠP)
	LEL-C ₃ H ₆ -50T	от 0 до 1,0 %	$\pm 0.06~\%$
Пропилен (пропен)	LEL-C3116-JU1	(от 0 до 50 % НКПР)	(±3 % HKΠP)
C ₃ H ₆	LEL-C ₃ H ₆ -50	от 0 до 1,0 %	±0,1 %
C3110		(от 0 до 50 % НКПР)	(±5 % HKΠP)
		(01 0 до 30 70 11КП1)	(±5 /0 HKH)
	LEL-C ₂ H ₅ OH-	от 0 до 1,50 %	±0,093 %
	48,3T	(от 0 до 48,3 % НКПР)	(±3 % HKΠP)
Этанол С ₂ Н ₅ ОН	,	, , ,	,
	LEL-C ₂ H ₅ OH-	от 0 до 1,50 %	±0,16 %
	48,3	(от 0 до 48,3 % НКПР)	$(\pm 5 \% \text{ HK}\Pi\text{P})$
	IEL GIL COT	от 0 до 0,425 %	±0,025 %
	LEL-C ₇ H ₁₆ -50T	(от 0 до 50 % НКПР)	(±3 % HKΠP)
н-гептан С7Н16	IDI O II #0	от 0 до 0,425 %	±0,042 %
	LEL-C ₇ H ₁₆ -50	(от 0 до 50 % НКПР)	(±5 % HKΠP)
	LEL-C ₂ H ₄ O-	от 0 до 1,3 %	±0,078 %
	50T	(от 0 до 50 % НКПР)	(±3 % HKΠP)
Оксид этилена С2Н4О		от 0 до 1,3 %	±0,13 %
	LEL-C ₂ H ₄ O-50	(от 0 до 50 % НКПР)	(±5 % HKΠP)
	LEL-C ₃ H ₆ O-	от 0 до 1,25 %	±0,075 %
2-пропанон (ацетон)	50T	(от 0 до 50 % НКПР)	±0,075 76 (±3 % HKΠP)
2-пропанон (ацетон) С ₃ H ₆ O	501	от 0 до 1,25 %	±0,13 %
C3116O	LEL-C ₃ H ₆ O-50	(от 0 до 50 % НКПР)	±0,13 % (±5 % HKΠP)
		от 0 до 2,0 %	±0,12 %
	LEL-H ₂ -50T		*
Водород Н2		(от 0 до 50 % НКПР)	(±3 % HKΠP)
-	LEL-H ₂ -50	от 0 до 2,0 %	±0,2 %
	<u> </u>	(от 0 до 50 % НКПР)	(±5 % НКПР)

Продолжение таблицы 4	2	2	1
1	2	3	4
	LEL-i-C ₄ H ₈ -	от 0 до 0,8 %	±0,048 %
2-метилпропен	50T	(от 0 до 50 % НКПР)	(±3 % HKΠP)
(изобутилен) і-С4Н8	LEL-i-C ₄ H ₈ -50	от 0 до 0,8 %	±0,08 %
	. 0	(от 0 до 50 % НКПР)	(±5 % HKΠP)
	LEL-C ₅ H ₈ -50T	от 0 до 0,85 %	±0,051 %
2-метил-1,3-бутадиен		(от 0 до 50 % НКПР)	(±3 % HKΠP)
(изопрен) С5Н8	LEL-C ₅ H ₈ -50	от 0 до 0,85 %	±0,085 %
		(от 0 до 50 % НКПР)	(±5 % HKΠP)
	LEL-C ₂ H ₂ -50T	от 0 до 1,15 %	±0,069 %
Ацетилен С ₂ Н ₂		(от 0 до 50 % НКПР)	(±3 % HKΠP)
, , , , ,	LEL-C ₂ H ₂ -50	от 0 до 1,15 %	±0,12 %
		(от 0 до 50 % НКПР)	(±5 % HKΠP)
	LEL-C ₃ H ₃ N-	от 0 до 1,4 %	±0,084 %
Акрилонитрил C ₃ H ₃ N	50T	(от 0 до 50 % НКПР)	(±3 % HKΠP)
1	LEL-C ₃ H ₃ N-50	от 0 до 1,4 %	±0,14 %
	3 3	(от 0 до 50 % НКПР)	(±5 % HKΠP)
	LEL-C ₇ H ₈ -50T	от 0 до 0,5 %	±0,03 %
Метилбензол (толуол)		(от 0 до 50 % НКПР)	(±3 % НКПР)
C_7H_8	LEL-C ₇ H ₈ -50	от 0 до 0,5 %	±0,05 %
		(от 0 до 50 % НКПР)	(±5 % HKΠP)
Этилбензол С ₈ Н ₁₀	LEL-C ₈ H ₁₀ - 37,5T	от 0 до 0,3 %	±0,024 %
		(от 0 до 37,5 % НКПР)	(±3 % HKΠP)
	LEL-C ₈ H ₁₈ -50T	от 0 до 0,4 %	±0,024 %
н-октан С ₈ Н ₁₈		(от 0 до 50 % НКПР)	(±3 % HKΠP)
		от 0 до 0,4 %	±0,04 %
		(от 0 до 50 % НКПР)	(±5 % HKΠP)
	LEL-C ₄ H ₈ O ₂ -	от 0 до 1,0 %	±0,06 %
Этилацетат С ₄ Н ₈ О ₂	50T	(от 0 до 50 % НКПР)	(±3 % HKΠP)
, , , , ,	LEL-C ₄ H ₈ O ₂ -50	от 0 до 1,0 %	±0,1 %
		(от 0 до 50 % НКПР)	(±5 % HKΠP)
	LEL-C ₃ H ₆ O ₂ -	от 0 до 1,55 %	±0,093 %
Метилацетат C ₃ H ₆ O ₂	50T	(от 0 до 50 % НКПР)	(±3 % HKΠP)
	LEL-C ₃ H ₆ O ₂ -50	от 0 до 1,55 %	±0,16 %
		(от 0 до 50 % НКПР)	(±5 % HKΠP)
Бутилацетат С ₆ H ₁₂ O ₂	LEL-C ₆ H ₁₂ O ₂ -	от 0 до 0,3 %	±0,036 %
J , 0 12 - 2	25T	(от 0 до 25 % НКПР)	(±3 % HKΠP)
125	LEL-C ₄ H ₆ -50T	от 0 до 0,7 %	±0,042 %
1,3-бутадиен (дивинил)		(от 0 до 50 % НКПР)	(±3 % HKΠP)
C_4H_6	LEL-C ₄ H ₆ -50	от 0 до 0,7 %	±0,07 %
	•	(от 0 до 50 % НКПР)	(±5 % HKΠP)
	LEL-C ₂ H ₄ Cl ₂ -	от 0 до 3,1 %	±0,19 %
1,2-дихлорэтан C ₂ H ₄ Cl ₂	50T	(от 0 до 50 % НКПР)	(±3 % HKΠP)
,	LEL-C ₂ H ₄ Cl ₂ -	от 0 до 3,1 %	±0,31 %
	50	(от 0 до 50 % НКПР)	(±5 % НКПР)
п 1 отга	LEL-C ₂ H ₆ S-	от 0 до 1,1 %	$\pm 0.066 \%$
Диметилсульфид C_2H_6S	50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
			` ,

Продолжение таблицы 4	T		
1	2	3	4
Диметилсульфид C ₂ H ₆ S	LEL-C ₂ H ₆ S-50	от 0 до 1,1 %	±0,11 %
диметилеульфид С21160	LEL-C21163-30	(от 0 до 50 % НКПР)	(±5 % НКПР)
	LEL-C ₆ H ₁₂ -50T	от 0 до 0,6 %	±0,036 %
1-гексен C ₆ H ₁₂	LEL-C611[2-301	(от 0 до 50 % НКПР)	(±3 % НКПР)
1-1 CRCCH C61112	LEL-C ₆ H ₁₂ -50	от 0 до 0,6 %	±0,06 %
		(от 0 до 50 % НКПР)	(±5 % НКПР)
2-бутанол (втор-	LEL-sec-	от 0 до 0,5 %	±0,051 %
бутанол) sec-C ₄ H ₉ OH	C ₄ H ₉ OH-31,2T	(от 0 до 31,2 % НКПР)	(±3 % НКПР)
	LEL-C ₂ H ₃ Cl-	от 0 до 1,8 %	±0,11 %
Винилхлорид С ₂ Н ₃ С1	50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
Винилилорид С2113С1	LEL-C ₂ H ₃ Cl-50	от 0 до 1,8 %	±0,18 %
	LLL-C2113C1-30	(от 0 до 50 % НКПР)	(±5 % НКПР)
	LEL-C ₃ H ₆ -50T	от 0 до 1,2 %	±0,072 %
Циклопропан C ₃ H ₆	EEE C3116 501	(от 0 до 50 % НКПР)	(±3 % НКПР)
Linkstonponan C3116	LEL-C ₃ H ₆ -50	от 0 до 1,2 %	±0,12 %
		(от 0 до 50 % НКПР)	(±5 % НКПР)
	LEL-C ₂ H ₆ O-	от 0 до 1,35 %	±0,081 %
Диметиловый эфир	50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
C_2H_6O	LEL-C ₂ H ₆ O-50	от 0 до 1,35 %	$\pm 0,14 \%$
		(от 0 до 50 % НКПР)	(±5 % НКПР)
	LEL-C ₄ H ₁₀ O-	от 0 до 0,85 %	±0,051 %
Диэтиловый эфир	50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
$C_4H_{10}O$	LEL-C ₄ H ₁₀ O-50	от 0 до 0,85 %	±0,085 %
	·	(от 0 до 50 % НКПР)	(±5 % НКПР)
	LEL-C ₃ H ₆ O-	от 0 до 0,95 %	±0,057 %
Оксид пропилена	50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
C ₃ H ₆ O		от 0 до 0,95 %	±0,095 %
- 55-40	$LEL-C_3H_6O-50$	(от 0 до 50 % НКПР)	(±5 % HKΠP)
	7 T7 G 77 G1	,	, ,
Хлорбензол C ₆ H ₅ Cl	LEL-C ₆ H ₅ Cl-	от 0 до 0,5 %	±0,039 %
1 0 0	38,4T	(от 0 до 38,4 % НКПР)	(±3 % НКПР)
2-бутанон	LEL-C ₄ H ₈ O-	от 0 до 0,75 %	±0,045 %
(метилэтилкетон)	50T	(от 0 до 50 % НКПР)	(±3 % HKПР)
C_4H_8O	LEL-C ₄ H ₈ O-50	от 0 до 0,75 %	±0,075 %
. ,		(от 0 до 50 % НКПР)	(±5 % HKПР)
2-метил- 2-пропанол	LEL-tert-	от 0 до 0,9 %	±0,054 %
(трет-бутанол) tert-	C ₄ H ₉ OH-50T	(от 0 до 50 % НКПР)	(±3 % HKПР)
C ₄ H ₉ OH	LEL-tert-	от 0 до 0,9 %	±0,09 %
	C ₄ H ₉ OH-50	(от 0 до 50 % НКПР)	(±5 % HKПР)
2-метокси- 2-	LEL-tert-	от 0 до 0,8 %	±0,048 %
метилпропан	$C_5H_{12}O-50T$	(от 0 до 50 % НКПР)	(±3 % HKПР)
(метилтретбутиловый	LEL-tert-	от 0 до 0,8 %	±0,08 %
эфир) tert-C ₅ H ₁₂ O	$C_5H_{12}O-50$	(от 0 до 50 % НКПР)	(±5 % HKПР)
1,4-диметилбензол (п-	LEL-p-C ₈ H ₁₀ -	от 0 до 0,2 %	±0,027 %
ксилол) р-С ₈ Н ₁₀	22,2T	(от 0 до 22,2 % НКПР)	(±3 % HKПР)
1,2-диметилбензол (о-	LEL-o-C ₈ H ₁₀ -	от 0 до 0,2 %	±0,03 %
ксилол) о-C ₈ H ₁₀	20T	(от 0 до 20 % НКПР)	(±3 % НКПР)

Продолжение таолицы 4				
1	2	3		4
2-пропанол (изопропанол) i-C ₃ H ₇ OH	LEL-i-C ₃ H ₇ OH- 50	от 0 до 1,0 % (от 0 до 50 % Н		±0,1 % (±5 % НКПР)
Аммиак NH ₃	LEL-NH ₃ -50T	от 0 до 7,5 % (от 0 до 50 % Н от 0 до 7,5 %	КПР)	±0,45 % (±3 % ΗΚΠΡ) ±0,75 %
	LEL-NH ₃ -50	(от 0 до 50 % Н	КПР)	(±5 % НКПР)
Октен С ₈ Н ₁₆	LEL-C ₈ H ₁₆ - 33,3T	от 0 до 0,3 % (от 0 до 33,3 % Н		±0,027 % (±3 % ΗΚΠΡ)
2	LEL-i-C ₅ H ₁₂ -	от 0 до 0,65	%	±0,039 %
2-метилбутан (изопентан) i-C ₅ H ₁₂	50T LEL-i-C ₅ H ₁₂ -50	(от 0 до 50 % H от 0 до 0,65	%	(±3 % HKΠP) ±0,065 %
Метантиол	LLL-1-C311 ₁₂ -30	(от 0 до 50 % Н	,	(±5 % НКПР)
(метилмеркаптан) СН ₃ SH	LEL-CH₃SH-50	от 0 до 2,05 (от 0 до 50 % Н		±0,21 % (±5 % ΗΚΠΡ)
Этантиол (этилмеркаптан) C_2H_5SH	LEL-C ₂ H ₅ SH- 50	от 0 до 1,4 % (от 0 до 50 % Н	КПР)	±0,14 % (±5 % НКПР)
Ацетонитрил C ₂ H ₃ N	LEL-C ₂ H ₃ N-50	от 0 до 1,5 % (от 0 до 50 % Н		±0,15 % (±5 % ΗΚΠΡ)
Диметилдисульфид С ₂ H ₆ S ₂	LEL-C ₂ H ₆ S ₂ -50	от 0 до 0,55 (от 0 до 50 % Н	%	±0,055 % (±5 % НКПР)
Бензин (по пропану)	LEL-ПНБ-50	от 0 до 50 % Н		±5 % НКПР
Дизельное топливо (по пропану)	LEL-ПНД-50	от 0 до 50 % Н		±5 % НКПР
Керосин (по пропану)	LEL-ПНК-50	от 0 до 50 % Н	КПР	±5 % НКПР
Уайт-спирит (по пропану)	LEL-ПНУ-50	от 0 до 50 % Н	КПР	±5 % НКПР
	LEL-C _x H _y CH ₄ - 50T	от 0 до 2,2 % (от 0 до 50 % Н		±0,13 % (±3 % HKПР)
	LEL-C _x H _y CH ₄ -	от 0 до 2,2 %		±0,22 %
Cynnyo ymuono vono von	50	(от 0 до 50 % Н		(±5 % HKΠP)
Сумма углеводородов C_xH_y (по метану)	LEL-C _x H _y CH ₄ -3000	от 0 до 3000 мг/м ³	до 500 пг/м ³ ключ.	$\pm 50~\mathrm{mg/m}^3$
	3000	CB.	500 до 0 мг/м ³	$\pm (0,152 \cdot X - 15,6)$
Сумма углеводородов $C_x H_y$	LEL-C _x H _y C ₃ H ₈ - 50T	от 0 до 0,85 (от 0 до 50 % Н		±0,051 % (±3 % НКПР)
(углеводороды алифатические предельные C_2 - C_{10}) (по пропану)	LEL-C _x H _y C ₃ H ₈ - 50	от 0 до 0,85 (от 0 до 50 % Н	%	±0,085 % (±5 % ΗΚΠΡ)

1	2	3	3	4
Сумма углеводородов C_xH_y (углеводороды	LEL-	от 0 до	от 0 до 500 ${}_{\mathrm{M}\Gamma/\mathrm{M}^3}$ включ.	$\pm 50 \text{ M}\Gamma/\text{M}^3$
алифатические предельные C ₂ -C ₁₀) (по пропану)	C _x H _y C ₃ H ₈ -3000	3000 мг/м ³	св. 500 до 3000 мг/м ³	$\pm (0,152 \cdot X - 15,6)$

- 1) Газоанализаторы с определяемыми компонентами, не приведенными в таблице, но указанными в Руководстве по эксплуатации, могут применяться в качестве индикаторов для предварительной оценки содержания компонентов. Газоанализаторы могут применяться для измерения содержания других определяемых компонентов при наличии аттестованных методик (методов) измерений (МИ) в соответствии с ГОСТ Р 8.563-2009.
- 2) Диапазон показаний выходных сигналов соответствует диапазону от 0 до 100 % НКПР или диапазону измерений. В зависимости от заказа диапазон показаний может быть установлен в соответствии с диапазоном измерений, указанным в таблице. Он может быть изменен пользователем при помощи программного обеспечения (поставляется по заказу) при условии, что диапазон показаний не может быть меньше нормируемого диапазона измерений.
 - ³⁾ Значения НКПР для горючих газов и паров в соответствии с ГОСТ 31610.20-1-2020. X – Содержание определяемого компонента в газовой смеси, мг/м³.

Таблица 5 — Метрологические характеристики газоанализаторов с электрохимическим сенсором (EC)

(EC) Определяемый компонент ¹⁾	Модификация сенсора	Диапазон измере определяемог	Пределы допускаемой основной погрешности, %		
	сенеора	объемной доли, % (млн ⁻¹)	массовой концентрации 3 , мг/м 3	приведе нной к ВПИ ⁴⁾	относит ельной
1	2	3	4	5	6
	EC-H ₂ S-7,1T	от 0 до 7,1 млн ⁻¹	от 0 до 10,0 включ.	±10	-
	EC-H ₂ S-7,1	от 0 до 7,1 млн ⁻¹	от 0 до 10,0 включ.	±20	-
	EC-H ₂ S-20T	от 0 до 10 млн ⁻¹ включ.	от 0 до 14,2 включ.	±10	-
	EC-112S-201	св. 10 до 20 млн ⁻¹	св. 14,2 до 28,4	-	±10
	EC H-S 20	от 0 до 10 млн ⁻¹ включ.	от 0 до 14,2 включ.	±20	-
	EC-H ₂ S-20	св. 10 до 20 млн ⁻¹	св. 14,2 до 28,4	-	±20
	EC-H ₂ S-50	от 0 до 5 млн ⁻¹ включ.	от 0 до 7,1 включ.	±15	-
Сероводород		св. 5 до 50 млн ⁻¹	св. 7,1 до 71	-	±15
Сероводород H_2S	EC-H ₂ S-100T	от 0 до 10 млн ⁻¹ включ.	от 0 до 14,2 включ.	±10	-
		св. 10 до 100 млн ⁻¹	св. 14,2 до 142	-	±10
	EC-H ₂ S-100	от 0 до 10 млн ⁻¹ включ.	от 0 до 14,2 включ.	±20	-
		св. 10 до 100 млн ⁻¹	св. 14,2 до 142	-	±20
	EC H S 200	от 0 до 20 млн ⁻¹ включ.	от 0 до 28,4 включ.	±15	-
	EC-H ₂ S-200	св. 20 до 200 млн ⁻¹	св. 28,4 до 284	-	±15
	EC 11 C 2000	от 0 до 200 млн ⁻¹ включ.	от 0 до 284 включ.	±15	-
	EC-H ₂ S-2000	св. 200 до 2000 млн ⁻¹	св. 284 до 2840	-	±15
Оксид этилена	EC C H O 20	от 0 до 5 млн ⁻¹ включ.	от 0 до 9,15 включ.	±20	-
C ₂ H ₄ O	EC-C ₂ H ₄ O-20	св. 5 до 20 млн ⁻¹	св. 9,15 до 36,6	-	±20
Хлористый	EC 1101 20	от 0 до 3 млн ⁻¹ включ.	от 0 до 4,56 включ.	±20	-
водород НС1	EC-HC1-30	св. 3 до 30 млн ⁻¹	св. 4,56 до 45,6	-	±20

Продолжение таол	2	3	4	5	6
	_	от 0 до 0,1	от 0 до 0,08		
Фтористый	70 XX	млн ⁻¹ включ.	включ.	±20	-
водород НБ	EC-HF-5	св. 0,1 до 5 млн ⁻¹	св. 0,08 до 4,15	-	±20
Фтористый	EC-HF-10	от 0 до 1 млн ⁻¹ включ.	от 0 до 0,8 включ.	±20	-
водород НГ		св. 1 до 10 млн ⁻¹	св. 0,8 до 8,3	-	±20
		от 0 до 0,05 млн ⁻¹ включ.	от 0 до 0,1 включ.	±20	-
Озон О3	EC-O ₃ -0,25	св. 0,05 до 0,25 млн ⁻¹	св. 0,1 до 0,5	-	±20
Моносилан		от 0 до 10 млн ⁻¹ включ.	от 0 до 13,4 включ.	±20	-
(силан) SiH ₄	EC-SiH ₄ -50	св. 10 до 50 млн ⁻¹	св. 13,4 до 67	-	±20
	EC-NO-50	от 0 до 5 млн ⁻¹ включ.	от 0 до 6,25 включ.	±20	-
		св. 5 до 50 млн ⁻¹	св. 6,25 до 62,5	-	±20
Оксид азота NO	EC-NO-250	от 0 до 50 млн ⁻¹ включ.	от 0 до 62,5 включ.	±20	-
		св. 50 до 250 млн ⁻¹	св. 62,5 до 312,5	-	±20
Диоксид азота	EC-NO ₂ -20	от 0 до 1 млн ⁻¹ включ.	от 0 до 1,91 включ.	±20	-
NO_2		св. 1 до 20 млн ⁻¹	св. 1,91 до 38,2	-	±20
	EC-NH ₃ -100	от 0 до 10 млн ⁻¹ включ.	от 0 до 7,1 включ.	±20	-
		св. 10 до 100 млн ⁻¹	св. 7,1 до 71	-	±20
A NIII	EC NIII 500	от 0 до 30 млн ⁻¹ включ.	от 0 до 21,3 включ.	±20	-
Аммиак NH ₃	EC-NH ₃ -500	св. 30 до 500 _{млн} -1	св. 21,3 до 355	-	±20
	EC NII 1000	от 0 до 100 млн ⁻¹ включ.	от 0 до 71 включ.	±20	-
	EC-NH ₃ -1000	св. 100 до 1000 млн ⁻¹	св. 71 до 710	-	±20
Цианистый водород HCN	EC HCM 10	от 0 до 0,5 млн ⁻¹ включ.	от 0 до 0,56 включ.	±15	-
	EC-HCN-10	св. 0,5 до 10 млн ⁻¹	св. 0,56 до 11,2	-	±15
	EC HCN 15	от 0 до 1 млн ⁻¹ включ.	от 0 до 1,12 включ.	±15	-
	EC-HCN-15	св. 1 до 15 млн ⁻¹	св. 1,12 до 16,8	-	±15

Продолжение таол	2	3	4	5	6
Цианистый	EC-HCN-30	от 0 до 5 млн ⁻¹ включ.	от 0 до 5,6 включ.	±15	-
водород HCN	EC-IICN-30	св. 5 до 30 млн ⁻¹	св. 5,6 до 33,6	-	±15
Цианистый	EC-HCN-100	от 0 до 10 млн ⁻¹ включ.	от 0 до 11,2 включ.	±15	-
водород HCN	LC-HCIV-100	св. 10 до 100 млн ⁻¹	св. 11,2 до 112	-	±15
	EC-CO-200	от 0 до 15 млн ⁻¹ включ.	от 0 до 17,4 включ.	±20	-
	LC CO 200	св. 15 до 200 млн ⁻¹	св. 17,4 до 232	-	±20
Оксид углерода	EC-CO-500	от 0 до 15 млн ⁻¹ включ.	от 0 до 17,4 включ.	±20	-
СО		св. 15 до 500 млн ⁻¹	св. 17,4 до 580	-	±20
	EC-CO-5000	от 0 до 1000 млн ⁻¹ включ.	от 0 до 1160 включ.	±20	-
	EC CO 3000	св. 1000 до 5000 млн ⁻¹	св. 1160 до 5800	-	±20
	EC-SO ₂ -5	от 0 до 1 млн ⁻¹ включ.	от 0 до 2,66 включ.	±20	-
		св. 1 до 5 млн ⁻¹	св. 2,66 до 13,3	-	±20
	EC-SO ₂ -20	от 0 до 5 млн ⁻¹ включ.	от 0 до 13,3 включ.	±20	-
		св. 5 до 20 млн ⁻¹	св. 13,3 до 53,2	-	±20
	EC-SO ₂ -50	от 0 до 10 млн ⁻¹ включ.	от 0 до 26,6 включ.	±20	-
Диоксид серы SO ₂	EC-3O ₂ -30	св. 10 до 50 млн ⁻¹	св. 26,6 до 133	ı	±20
_	EC-SO ₂ -100	от 0 до 10 млн ⁻¹ включ.	от 0 до 26,6 включ.	±20	-
	EC-3O ₂ -100	св. 10 до 100 млн ⁻¹	св. 26,6 до 266	ı	±20
	FG GG 2000	от 0 до 100 млн ⁻¹ включ.	от 0 до 266 включ.	±20	-
	EC-SO ₂ -2000	св. 100 до 2000 млн ⁻¹	св. 266 до 5320	-	±20
Хлор Cl ₂	EC-Cl ₂ -5	от 0 до 0,3 млн ⁻¹ включ.	от 0 до 0,88 включ.	±20	-
		св. 0,3 до 5 млн ⁻¹	св. 0,88 до 14,75	-	±20
	EC CL 22	от 0 до 5 млн ⁻¹ включ.	от 0 до 14,7 включ.	±20	-
	EC-Cl ₂ -20	св. 5 до 20 млн ⁻¹	св. 14,7 до 59	-	±20

Продолжение таоз	2	3	4	5	6
1		от 0 до 10 %	'		U
IC O	EC-O ₂ -30	включ.	-	± 5	-
Кислород О2	_	св. 10 до 30 %	-	-	±5
	EC-O ₂ -100	от 0 до 100 %	-	±1	-
		от 0 до 100 млн ⁻¹	от 0 до 8,0	±10	
	EC-H ₂ -1000	включ.	включ.	±10	_
Водород Н2	LC 112 1000	св. 100 до 1000 млн ⁻¹	св. 8,0 до 80,0	-	±10
Бодород 112		от 0 до 1000	от 0 до 80,0	±10	_
	EC-H ₂ -10000	млн ⁻¹ включ.	включ.		
		св. 1000 до 10000 млн ⁻¹	св. 80,0 до 800	-	±10
		от 0 до 0,4 млн ⁻¹	от 0 до 0,5	±20	_
Формальдегид	EC-CH2O-10	включ.	включ.	±20	_
CH ₂ O	20 01120 10	св. 0,4 до 10 млн ⁻¹	св. 0,5 до 12,5	-	±20
Несимметричны		от 0 до 0,12	от 0 до 0,3	±20	1
й	EC-C ₂ H ₈ N ₂ -0,5	млн ⁻¹ включ.	включ.	-20	
диметилгидрази н $C_2H_8N_2$	2 3 321101 12 0,0	св. 0,12 до 0,5 млн ⁻¹	св. 0,3 до 1,24	-	±20
	EC-CH ₃ OH-20	от 0 до 5 млн ⁻¹	от 0 до 6,65	±20	_
		включ.	включ.		_
		св. 5 до 20 млн ⁻¹	св. 6,65 до 26,6	-	±20
	EC-CH₃OH-50	от 0 до 5 млн ⁻¹	от 0 до 6,65	±20	-
		включ. св. 5 до 50 млн ⁻¹	включ. св. 6,65 до 66,5		±20
		от 0 до 20 млн ⁻¹	от 0 до 26,6	-	±20
Метанол СН ₃ ОН	EC-CH ₃ OH-200	включ.	включ.	± 20	-
		св. 20 до 200	св. 26,6 до 266,0		
		млн ⁻¹		-	±20
		от 0 до 100 млн ⁻¹	от 0 до 133,0	120	
	EC-CH ₃ OH-1000	включ.	включ.	±20	-
	LC-C113O11-1000	св. 100 до 1000 млн ⁻¹	св. 133,0 до 1330	-	±20
Этантиол (этилмеркаптан)	EC-C ₂ H ₅ SH-4	от 0 до 0,4 млн ⁻¹ включ.	от 0 до 1 включ.	±20	-
C ₂ H ₅ SH	22 2213011	св. 0,4 до 4 млн ⁻¹	св. 1 до 10	-	±20
Метантиол		от 0 до 0,4	от 0 до 0,8	1.20	-
(метилмеркапта	EC-CH ₃ SH-4	млн ⁻¹ включ.	включ.	±20	
н) СН ₃ SН		св. 0,4 до 4 млн ⁻¹	св. 0,8 до 8	-	±20
Карбонилулорил		от 0 до 0,1 млн ⁻¹	от 0 до 0,41	±20	
Карбонилхлорид (фосген) СОСl ₂	EC-COCl ₂ -1	включ.	включ.		
(4001011) 00012		св. 0,1 до 1 млн ⁻¹	св. 0,41 до 4,11	-	±20
	EG E 1	от 0 до 0,1 млн ⁻¹	от 0 до 0,16	±20	_
Φ тор F_2	EC-F ₂ -1	ВКЛЮЧ.	ВКЛЮЧ.		120
		св. 0,1 до 1 млн ⁻¹	св. 0,16 до 1,58	_	±20

1	2	3	4	5	6
	EC-PH ₃ -1	от 0 до 0,1 млн ⁻¹ включ.	от 0 до 0,14 включ.	±20	-
Фосфин РН3		св. 0,1 до 1 млн ⁻¹	св. 0,14 до 1,41	-	±20
Фосфин ГП3	EC-PH ₃ -10	от 0 до 1 млн ⁻¹ включ.	от 0 до 1,41 включ.	±20	-
		св. 1 до 10 млн ⁻¹	св.1,41 до 14,1	-	±20
Арсин AsH ₃	EC-AsH ₃ -1	от 0 до 0,1 млн ⁻¹ включ.	от 0 до 0,32 включ.	±20	-
1		св. 0,1 до 1 млн ⁻¹	св.0,32 до 3,24	-	±20
	EC-C ₂ H ₄ O ₂ -10	от 0 до 2 млн ⁻¹ включ.	от 0 до 5 включ.	±20	-
Уксусная		св. 2 до 10 млн ⁻¹	св. 5 до 25	-	±20
кислота С ₂ Н ₄ О ₂	EC-C ₂ H ₄ O ₂ -30	от 0 до 5 млн ⁻¹ включ.	от 0 до 12,5 включ.	±20	-
		св. 5 до 30 млн ⁻¹	св.12,5 до 75,0	1	±20
Гидразин N ₂ H ₄	EC-N ₂ H ₄ -2	от 0 до 0,2 млн ⁻¹ включ.	от 0 до 0,26 включ.	±20	-
		св. 0,2 до 2 млн ⁻¹	св. 0,26 до 2,66	-	±20
Стирол С ₈ Н ₈	EC-C ₈ H ₈ -5	от 0 до 1 млн ⁻¹ включ.	от 0 до 4,37 включ.	±20	-
		св. 1 до 5 млн ⁻¹	св. 4,37 до 21,9	-	±20

^{1) —} Газоанализаторы с определяемыми компонентами, не приведенными в таблице, но указанными в Руководстве по эксплуатации, могут применяться в качестве индикаторов для предварительной оценки содержания компонентов. Газоанализаторы могут применяться для измерения содержания других определяемых компонентов при наличии аттестованных методик (методов) измерений (МИ) в соответствии с ГОСТ Р 8.563-2009.

4) – ВПИ – верхний предел диапазона/поддиапазона измерений.

²⁾ - Диапазон показаний выходных сигналов соответствует диапазону измерений. В зависимости от заказа диапазон показаний может быть изменен, как при производстве, так и пользователем при помощи программного обеспечения (поставляется по заказу). Диапазон показаний не может быть меньше диапазона измерений.

 $^{^{3)}}$ - Пересчет значений объемной доли X, млн $^{-1}$, в массовую концентрацию C, мг/м 3 , проводят по формуле: C=X·M/V $_{\rm m}$, где C — массовая концентрация компонента, мг/м 3 ; М — молярная масса компонента, г/моль; V $_{\rm m}$ — молярный объем газа-разбавителя - воздуха, равный 24,06, при условиях (20 С и 101,3 кПа по ГОСТ 12.1.005-88), дм 3 /моль.

Таблица 6 — Метрологические характеристики газоанализаторов с фотоионизационным сенсором (PID)

Определяемый компонент ¹⁾	Модификация	Диапазон измере определяемог	Пределы допускаемой основной погрешности, %		
компонент	сенсора	объемной доли, $\%$ (млн $^{-1}$)	массовой концентрации 3 , мг/м 3	приведе нной к ВПИ ⁴⁾	относите льной
1	2	3	4	5	6
	PID-C ₂ H ₃ Cl-10	от 0 до 1,9 включ.	от 0 до 5 включ.	±20	-
		св. 1,9 до 10	св. 5 до 26	-	±20
Винилхлорид С ₂ H ₃ Cl	PID-C ₂ H ₃ Cl-100	от 0 до 10 включ.	от 0 до 26 включ.	±20	-
C2113C1		св. 10 до 100	св. 26 до 260	-	±20
	PID-C ₂ H ₃ Cl-500	от 0 до 100 включ.	от 0 до 260 включ.	±20	-
		св. 100 до 500	св. 260 до 1300	-	±20
	PID-C ₆ H ₆ -10	от 0 до 4,6 включ.	от 0 до 15 включ.	±20	-
		св. 4,6 до 10	св. 15 до 32,5	-	±20
Бензол С ₆ Н ₆	PID-C ₆ H ₆ -100	от 0 до 10 включ.	от 0 до 32,5 включ.	±20	-
		св. 10 до 100	св. 32,5 до 325	-	±20
	PID-C ₆ H ₆ -500	от 0 до 100 включ.	от 0 до 325 включ.	±20	-
		св. 100 до 500	св. 325 до 1625	-	±20
	PID-C ₈ H ₁₀ -100	от 0 до 10 включ.	от 0 до 44,1 включ.	± 15	-
Этилбензол		св. 10 до 100	св. 44,1 до 441	-	± 15
C_8H_{10}	PID-C ₈ H ₁₀ -500	от 0 до 100 включ.	от 0 до 441 включ.	± 15	-
		св. 100 до 500	св. 441 до 2205	-	± 15
Фенилэтилен	PID-C ₈ H ₈ -40	от 0 до 6,9 включ.	от 0 до 29,9 включ.	±20	-
(стирол)		св. 6,9 до 40	св. 29,9 до 173,2	-	±20
(винилбензол) C_8H_8	PID-C ₈ H ₈ -500	от 0 до 100 включ.	от 0 до 433 включ.	±20	-
		св. 100 до 500	св. 433 до 2165		±20
н-пропилацетат	PID-C ₅ H ₁₀ O ₂ -100	от 0 до 30 включ.	от 0 до 127,5 включ.	±20	-
$C_5H_{10}O_2$		св. 30 до 100	св. 127,5 до 425	-	±20
Эпихлоргидрин С ₃ H ₅ ClO	PID-C ₃ H ₅ ClO-10	от 0 до 2 включ.	от 0 до 7,7 включ.	±20	_
C3H5CIO		св. 2 до 10	св. 7,7 до 38,5	-	±20
Хлористый	PID-C ₇ H ₇ Cl-10	от 0 до 2 включ.	от 0 до 10,5 включ.	±20	-
бензил С ₇ Н ₇ С1		св. 2 до 10	св. 10,5 до 52,67	-	±20

Продолжение таблицы 6						
1	2	3	-	5	6	
Фурфуриловый	PID-C ₅ H ₆ O ₂ -10	от 0 до 2 включ.	от 0 до 8,6 включ.	±20	-	
спирт С ₅ Н ₆ О ₂		св. 2 до 10	св. 8,6 до 40,8	-	±20	
	DID C II OII	от 0 до 500	от 0 до 960	. 15		
Этанол С2Н5ОН	PID-C ₂ H ₅ OH-	включ.	включ.	± 15	-	
	2000	от 0 до 2 включ. св. 2 до 10 от 0 до 500 включ. св. 500 до 2000 от 0 до 0,2 включ. св. 0,2 до 3 от 0 до 2 включ. св. 0,2 до 3 от 0 до 0,4 включ. св. 2 до 10 от 0 до 0,5 включ. св. 2 до 10 от 0 до 0,5 включ. св. 2 до 10 от 0 до 0,5 включ. св. 0,4 до 10 св. 4 до 10 св. 10 до 25 от 0 до 20 включ. св. 20 до 100 св. 50 до 250 от 0 до 2 включ. св. 2 до 10 от 0 до 250 от 0 до 2 включ. св. 2 до 10 от 0 до 250 от 0 до 2 включ. св. 2 до 10 от 0 до 250 от 0 до 2 включ. св. 2 до 10 от 0 до 250 от 0 до 2 включ. св. 2 до 10 от 0 до 250 от 0 до 2 включ. св. 2 до 10 от 0 до 250 от 0 до 2 включ. св. 2 до 10 от 0 до 23,3 включ. св. 10 до 100 от 0 до 233 включ. св. 10 до 100 от 0 до 233 включ. св. 10 до 100 от 0 до 233 включ. св. 10 до 100 от 0 до 233 включ. св. 10 до 100 от 0 до 233 включ. св. 10 до 100 от 0 до 233 включ. св. 10 до 100 от 0 до 233 включ. св. 100 до 1000 от 0 до 233 включ. св. 100 до 1000 от 0 до 233 включ. св. 100 до 1000 от 0 до 233 включ. св. 100 до 1000 от 0 до 233 включ. св. 100 до 1000 от 0 до 233 включ. св. 100 до 1000 от 0 до 233 включ. св. 100 до 1000 от 0 до 233 включ. св. 100 до 1000 от 0 до 233 включ. св. 100 до 1000 от 0 до 233 от 0 до 105 включ. св. 1165 до 13980 от 0 до 9,9	-	± 15		
		от 0 до 0,2	от 0 до 0,5	± 20		
Моноэтанолами н (2-	PID-C ₂ H ₇ NO-3	включ.	включ.	± 20	-	
н (2-		св. 0,2 до 3	св. 0,5 до 7,6	-	± 20	
аминоэтанол) C_2H_7NO	PID-C ₂ H ₇ NO-10	от 0 до 2 включ.	-	± 20	-	
		св. 2 до 10	св. 5,1 до 25,4	-	± 20	
Φ		от 0 до 0,4		. 20		
Формальдегид	PID-CH ₂ O-10	включ.	включ.	± 20	-	
CH ₂ O		св. 0,4 до 10	св. 0,5 до 12,5	-	± 20	
2	PID-i-C ₃ H ₇ OH-	от 0 до 4 включ.		± 20	-	
2-пропанол	10	св. 4 до 10	св. 10 до 25	-	± 20	
(изопропанол)	DID : C II OII	от 0 до 20	от 0 до 50	. 20		
i-C ₃ H ₇ OH	PID-i-C ₃ H ₇ OH-	включ.	включ.	± 20	-	
	100	св. 20 до 100	св. 50 до 250	-	± 20	
Vvevenag	PID-C ₂ H ₄ O ₂ -10	от 0 до 2 включ.	от 0 до 5 включ.	± 20	-	
Уксусная	P1D-C2H4O2-10	св. 2 до 10	св. 5 до 25	-	± 20	
кислота С ₂ Н ₄ О ₂	PID-C ₂ H ₄ O ₂ -100	от 0 до 100	от 0 до 250	±20	-	
	PID-i-C ₄ H ₈ -10	от 0 до 2 включ.	•	±20	-	
		св. 2 до 10	св. 4,6 до 23,3	-	±20	
		от 0 до 10		±20		
2-метилпропен	PID-i-C ₄ H ₈ -100	включ.	включ.	±20	-	
(изобутилен)		св. 10 до 100	св. 23,3 до 233	-	±20	
(ЛОС по		от 0 до 100	от 0 до 233	±15	_	
изобутилену)	PID-i-C ₄ H ₈ -1000			±13	_	
i-C ₄ H ₈			св. 233 до 2330	-	±15	
		от 0 до 500	от 0 до 1165	±15	_	
	PID-i-C ₄ H ₈ -6000	включ.		-13		
	112 1 04110 0000	св. 500 до 6000		-	±15	
		от 0 до 3,2	от 0 до 9,9	±20		
	PID-C ₄ H ₉ OH-10	включ.	включ.		-	
1-бутанол		св. 3,2 до 10	св. 9,9 до 30,8	-	±20	
C ₄ H ₉ OH		от 0 до 9,7	от 0 до 29,9	120		
C7117O11	PID-C ₄ H ₉ OH-40	включ.	включ.	±20		
	1 110-04119011-40	св. 9,7 до 40	св. 29,9 до 123,3	-	±20	

1 1	2	3	4	5	6
	PID-C ₄ H ₁₁ N-10	от 0 до 3 включ.	от 0 до 9,1 включ.	±20	-
Диэтиламин		св. 3 до 10	св. 9,1 до 30,4	-	±20
C ₄ H ₁₁ N	PID-C ₄ H ₁₁ N-40	от 0 до 9,8 включ.	от 0 до 29,8 включ.	±20	-
		св. 9,8 до 40	св. 29,8 до 121,6	-	±20
	PID-CH ₃ OH-10	от 0 до 3,75 включ.	от 0 до 4,98 включ.	±15	-
Метанол СН ₃ ОН		св. 3,75 до 10	св. 4,98 до 13,3	-	±15
IVICIAHOJI CII3OII	PID-CH ₃ OH-40	от 0 до 11,2 включ.	от 0 до 14,9 включ.	±15	-
		св. 11,2 до 40	св. 14,9 до 53,2	-	±15
	PID-C ₇ H ₈ -40	от 0 до 13 включ.	от 0 до 49,8 включ.	±15	-
Метилбензол		св. 13 до 40	св. 49,8 до 153,3	-	±15
(толуол) С7Н8	PID-C ₇ H ₈ -100	от 0 до 13 включ.	от 0 до 49,8 включ.	±15	-
		св. 13 до 100	св. 49,8 до 383	-	±15
	PID-C ₆ H ₅ OH-3	от 0 до 0,25 включ.	от 0 до 0,98 включ.	±20	-
* CHOH	ů ů	св. 0,25 до 3	св. 0,98 до 11,74	-	±20
Фенол С ₆ Н ₅ ОН	PID-C ₆ H ₅ OH-10	от 0 до 2 включ.	от 0 до 7,8 включ.	±20	-
		св. 2 до 10	св. 7,8 до 39,1	-	±20
1,3- диметилбензол	DID m CoHee 100	от 0 до 10 включ.	от 0 до 44,2 включ.	±15	1
(м-ксилол) m-C ₈ H ₁₀	PID-m-C ₈ H ₁₀ -100	св. 10 до 100	св. 44,2 до 442	ı	±15
1,2- диметилбензол	PID-o-C ₈ H ₁₀ -100	от 0 до 10 включ.	от 0 до 44,2 включ.	±15	-
(о-ксилол) о-С ₈ Н ₁₀	11D-0-C811[0-100	св. 10 до 100	св. 44,2 до 442	-	±15
1,4- диметилбензол	PID-p-C ₈ H ₁₀ -100	от 0 до 10 включ.	от 0 до 44,2 включ.	±15	-
(п-ксилол) p-С ₈ H ₁₀	FID-p-C8H10-100	св. 10 до 100	св. 44,2 до 442	1	±15
Оксид этилена	PID-C ₂ H ₄ O-10	от 0 до 1,65 включ.	от 0 до 3 включ.	±20	-
C ₂ H ₄ O		св. 1,65 до 10	св. 3 до 18,3	-	±20
Фосфин РН3	PID-PH ₃ -10	от 0 до 1 включ.	от 0 до 1,4 включ.	±20	-
1 00 mm 1 115	110 111, 10	св. 1 до 10	св. 1,4 до 14,1	-	±20
Нафталин С ₁₀ Н ₈	PID-C ₁₀ H ₈ -10	от 0 до 3,7 включ.	от 0 до 19,7 включ.	±20	-
		св. 3,7 до 10	св. 19,7 до 53,3	-	±20

Продолжение таб.		2			
1	2	3	4	5	6
		от 0 до 0,2	от 0 до 1,33	±20	_
Бром Br ₂	PID-Br ₂ -2	включ.	включ.	-20	
		св. 0,2 до 2	св. 1,33 до 13,3	-	±20
		от 0 до 20	от 0 до 14,2	±15	_
	PID-NH ₃ -100	включ.	включ.	±13	_
Аммиак NH3		св. 20 до 100	св. 14,2 до 71	-	±15
AMMHAK IVII3		от 0 до 100	от 0 до 71	±15	
	PID-NH ₃ -1000	включ.	включ.	±13	-
		св. 100 до 1000	св. 71 до 710	-	±15
Этантиол		от 0 до 0,4	от 0 до 1 включ.	±20	
(этилмеркаптан)	PID-C ₂ H ₅ SH-10	включ.	от одо т включ.	=20	-
C ₂ H ₅ SH		св. 0,4 до 10	св. 1 до 25,8	-	±20
		от 0 до 0,4	от 0 до 0,8	120	
Метантиол	PID-CH ₃ SH-10	включ.	включ.	±20	-
(метилмеркаптан)		св. 0,4 до 10	св. 0,8 до 20	-	±20
CH ₃ SH	DID CH CH 20	от 0 до 2 включ.	от 0 до 4 включ.	±20	-
	PID-CH ₃ SH-20	св. 2 до 20	св. 4 до 40	-	±20
n		от 0 до 13	от 0 до 47,6	. 20	
Этилацетат	PID-C ₄ H ₈ O ₂ -100	включ.	включ.	±20	-
$C_4H_8O_2$. , ,	св. 13 до 100	св. 47,6 до 366	-	±20
Бутилацетат С ₆ H ₁₂ O ₂	PID-C ₆ H ₁₂ O ₂ -100	от 0 до 10	от 0 до 48,3		
		включ.	включ.	±20	-
		св. 10 до 100	св. 48,3 до 483	_	±20
П		от 0 до 50	от 0 до 93,5		
Пропилен (пропен) С ₃ Н ₆	PID-C ₃ H ₆ -300	включ.	включ.	±15	-
		св. 50 до 300	св. 93,5 до 561	-	±15
		от 0 до 0,35	от 0 до 1,37		10
	$PID-C_2H_6S_2-2$	включ.	включ.	±20	-
2,3-дитиабутан	1115 6211052 2	св. 0,35 до 2	св. 1,37 до 7,8	-	±20
(диметилдисуль			от 0 до 7,8		-20
ϕ ид) $C_2H_6S_2$	PID-C ₂ H ₆ S ₂ -10	от 0 до 2 включ.	включ.	±20	-
	1115 6211652 10	св. 2 до 10	св. 7,8 до 39,2	_	±20
		от 0 до 0,25	от 0 до 1,02		-20
2,5-фурандион	PID-C ₄ H ₂ O ₃ -3	включ.	включ.	±20	-
(малеиновый	1 ID-C4112O3-3	св. 0,25 до 3	св. 1,02 до 12,2	-	±20
ангидрид)			от 0 до 8,16		-20
С ₄ Н ₂ О ₃	PID-C ₄ H ₂ O ₃ -10	от 0 до 2 включ.	включ.	±20	-
C4112O3	1110-0411203-10	св. 2 до 10	св. 8,16 до 40,8	_	±20
Пиохии фил		сь. 2 до 10	от 0 до 3,17	_	
Дисульфид		от 0 до 1 включ.		±20	-
углерода (сероуглерод)	PID-CS ₂ -10		включ.		
CS_2		св. 1 до 10	св. 3,17 до 31,7	-	±20
			от 0 до 10,2		
Ацетонитрил	DID C.H.M 10	от 0 до 6 включ.		±15	-
C_2H_3N	PID-C ₂ H ₃ N-10	on 6 70 10	ВКЛЮЧ.		_+ 1.5
		св. 6 до 10	св. 10,2 до 17,1	-	±15
Циклогексан	DID C.H. 100	от 0 до 20	от 0 до 70	±20	-
C_6H_{12}	$PID-C_6H_{12}-100$	ВКЛЮЧ.	ВКЛЮЧ.		120
	С ₆ H ₁₂ св. 20 до 100	св. 70 до 350	-	±20	

продолжение тао.				ı	1
1	2	3	4	5	6
1,3-бутадиен		от 0 до 50	от 0 до 112	±20	_
(дивинил) С ₄ Н ₆	$PID-C_4H_6-500$	включ.	включ.	-20	
(4116)		св. 50 до 500	св. 112 до 1125	-	±20
		от 0 до 84	от 0 до 301	±20	_
н-гексан С ₆ Н ₁₄	$PID-C_6H_{14}-1000$	включ.	включ.	-20	
		св. 84 до 1000	св. 301 до 3584	-	±20
		от 0 до 0,1	от 0 до 0,32	±20	_
Арсин AsH ₃	PID-AsH ₃ -3	включ.	включ.		_
		св. 0,1 до 3	св. 0,32 до 9,7	-	±20
Лимотилоудифи		от 0 до 20	от 0 до 51,6	±20	
Диметилсульфи д С ₂ Н ₆ S	$PID-C_2H_6S-100$	включ.	включ.	±20	-
Д С2П63		св. 20 до 100	св. 51,6 до 258	-	±20
		от 0 до 20	от 0 до 23,4	±20	
	PID-C ₂ H ₄ -300	включ.	включ.	±20	-
Davis C II		св. 20 до 300	св. 23,4 до 351	-	±20
Этилен С ₂ Н ₄		от 0 до 100	от 0 до 117	120	
	PID-C ₂ H ₄ -1800	включ.	включ.	±20	-
		св. 100 до 1800	св. 117 до 2106	-	±20
		от 0 до 0,7	от 0 до 1,45	120	
Акрилонитрил	PID-C ₃ H ₃ N-10	включ.	включ.	±20	-
C ₃ H ₃ N		св. 0,7 до 10	св. 1,45 до 22,1	-	±20
M		от 0 до 0,5	от 0 до 0,96	120	
Муравьиная кислота СН ₂ О ₂	PID-CH ₂ O ₂ -10	включ.	включ.	±20	-
		св. 0,5 до 10	св. 0,96 до 19,1	-	±20
		от 0 до 50	от 0 до 208	+15	
	PID-C ₇ H ₁₆ -500	включ.	включ.	±15	-
C II		св. 50 до 500	св. 208 до 2084	-	±15
н-гептан С ₇ Н ₁₆		от 0 до 100	от 0 до 416	+15	
	PID-C ₇ H ₁₆ -2000	включ.	включ.	±15	-
		св. 100 до 2000	св. 416 до 8334	-	±15
2 проточен		от 0 до 80	от 0 до 193	+ 1.5	
2-пропанон	PID-C ₃ H ₆ O-1000	включ.	включ.	±15	-
(ацетон) С ₃ Н ₆ О		00 включ. включ. св. 100 до 1800 св. 117 до 2106 от 0 до 0,7 от 0 до 1,45 включ. включ. св. 0,7 до 10 св. 1,45 до 22,1 от 0 до 0,5 от 0 до 0,96 включ. включ. св. 0,5 до 10 св. 0,96 до 19,1 от 0 до 50 от 0 до 208 включ. св. 208 до 2084 от 0 до 100 от 0 до 416 включ. св. 100 до 2000 св. 100 до 2000 св. 416 до 8334 от 0 до 80 от 0 до 193 включ. св. 80 до 1000 св. 80 до 1000 св. 193 до 2415 от 0 до 2 включ. от 0 до 8,23 включ. св. 2 до 20 св. 8,23 до 82,3 от 0 до 7,5	-	±15	
		от О то 2	от 0 до 8,23	120	
1,2-дихлорэтан	PID-C ₂ H ₄ Cl ₂ -20	от и до 2 включ.	включ.	±20	-
C ₂ H ₄ Cl ₂	1110-02114012-20	св. 2 ло 20	св. 8.23 до 82 3	_	±20
		ов. 2 до 20	•		20
Этилцеллозольв	DID G II G 20	от 0 до 2 включ.		±20	_
(2-этоксиэтанол)	$PID-C_4H_{10}O_2-20$				
C ₄ H ₁₀ O ₂				-	±20
Диметиловый		, ,	, ,	±15	_
эфир С ₂ Н ₆ О	$PID-C_2H_6O-500$	включ.	включ.		
- φπρ C2110O		св. 100 до 500	св. 192 до 958	-	±15
2-метилпропан		от 0 до 100	от 0 до 241	±15	_
(изобутан)	PID-i-C ₄ H ₁₀ -1000	включ.	включ.	±1 <i>J</i>	_
i-C ₄ H ₁₀	1 22 1 041110 1000	св. 100 до 1000	св. 241 до 2417	_	±15
- 410		50 Mg 1000			1.0

1	2	3	4	5	6
2-метил-1- пропанол	PID-i-C ₄ H ₉ OH-	от 0 до 3 включ.	от 0 до 9,2 включ.	±20	1
(изобутанол) i-C ₄ H ₉ OH	20	св. 3 до 20	св. 9,2 до 61,6	-	±20
Циклогексанон	PID-C ₆ H ₁₀ O-20	от 0 до 2 включ.	от 0 до 7 включ.	±20	-
$C_6H_{10}O$	F1D-C6H10O-20	св. 2 до 20	св. 7 до 70	-	±20
2-бутанон (метилэтилкетон	PID-C ₄ H ₈ O-500	от 0 до 60 включ.	от 0 до 180 включ.	±15	-
) C ₄ H ₈ O		св. 60 до 500	св. 180 до 1500	-	±15
Тетраэтилортоси ликат (TEOC)	PID-C ₈ H ₂₀ O ₄ Si-	от 0 до 2 включ.	от 0 до 17,3 включ.	±20	-
C ₈ H ₂₀ O ₄ Si	10	св. 2 до 10	св. 17,3 до 86,6	-	±20
Акролеин С ₃ Н ₄ О	PID-C ₃ H ₄ O-10	от 0 до 2 включ.	от 0 до 4,98 включ.	±20	-
С3П4О		св. 2 до 10	св. 4,98 до 24,9	-	±20

^{1) —} Газоанализаторы с определяемыми компонентами, не приведенными в таблице, но указанными в Руководстве по эксплуатации, могут применяться в качестве индикаторов для предварительной оценки содержания компонентов. Газоанализаторы могут применяться для измерения содержания других определяемых компонентов при наличии аттестованных методик (методов) измерений (МИ) в соответствии с ГОСТ Р 8.563-2009;

4) – ВПИ – верхний предел диапазона/поддиапазона измерений.

^{2) —} Диапазон показаний выходных сигналов устанавливается равным диапазону измерений, указанному в таблице. Он может быть изменен пользователем при помощи программного обеспечения (поставляется по заказу);

 $^{^{3)}}$ — Пересчет значений объемной доли X, млн $^{-1}$, в массовую концентрацию C, мг/м 3 , проводят по формуле: C=X·M/V_m, где C — массовая концентрация компонента, мг/м 3 ; М — молярная масса компонента, г/моль; V_m — молярный объем газа-разбавителя - воздуха, равный 24,06, при условиях (20 С и 101,3 кПа по ГОСТ 12.1.005-88), дм 3 /моль.

Таблица 7 — Метрологические характеристики газоанализаторов с полупроводниковым сенсором (MEMS)

(MEMS)	T		Т
		Диапазон измерений	Пределы
Определяемый	Модификация	содержания	допускаемой
компонент ¹⁾	сенсора	определяемого	основной абсолютной
		компонента	погрешности
1	2	3	4
	MEMS-H ₂ -100	от 0 до 4,0 %	±0,2 %
	WILIVIS-112-100	(от 0 до 100 % НКПР)	(±5 % НКПР)
Водород Н2	MEMS-H ₂ -50	от 0 до 2,0 %	±0,2 %
	WIEWIS-112-30	(от 0 до 50 % НКПР)	(±5 % НКПР)
	MEMS-H ₂ -20%	от 0 до 20 %	±0,5 %
	MEMS-CH ₄ -100	от 0 до 4,4 %	±0,22 %
	MEMS-CH4-100	(от 0 до 100 % НКПР)	(±5 % НКПР)
Mamara CII	MEMC CIL SOT	от 0 до 2,2 %	±0,13 %
Метан СН4	MEMS-CH ₄ -50T	(от 0 до 50 % НКПР)	(±3 % НКПР)
	MEMO OH 50	от 0 до 2,2 %	±0,22 %
	MEMS-CH ₄ -50	(от 0 до 50 % НКПР)	(±5 % НКПР)
	MENG CH 100	от 0 до 2,3 %	±0,12 %
	$MEMS-C_2H_4-100$	(от 0 до 100 % НКПР)	(±5 % НКПР)
Этилен С ₂ Н ₄	NENG GIL 50	0 до 1,15 %	±0,12 %
	MEMS- C_2H_4 -50	(от 0 до 50 % НКПР)	(±5 % НКПР)
		0 до 1,7 %	±0,085 %
	MEMS-C ₃ H ₈ -100	(от 0 до 100 % НКПР)	(±5 % HKΠP)
Пропан С ₃ Н ₈	MEMS-C ₃ H ₈ -50T	от 0 до 0,85 %	±0,051 %
		(от 0 до 50 % НКПР)	(±3 % HKΠP)
		от 0 до 0,85 %	±0,085 %
	MEMS- C_3H_8 -50	(от 0 до 50 % НКПР)	(±5 % HKΠP)
		от 0 до 1,4 %	±0,07 %
	MEMS- C_4H_{10} -100	(от 0 до 100 % НКПР)	(±5 % HKΠP)
н-бутан С ₄ Н ₁₀		от 0 до 0,7 %	±0,07 %
	MEMS-C ₄ H ₁₀ -50	(от 0 до 50 % НКПР)	(±5 % HKΠP)
		от 0 до 1,6 %	±0,08 %
	MEMS- C_4H_8 -100	(от 0 до 100 % НКПР)	(±5 % HKΠP)
1-бутен С ₄ Н ₈		от 0 до 0,8 %	±0,08 %
	MEMS- C_4H_8 -50	(от 0 до 50 % НКПР)	(±5 % HKΠP)
		от 0 до 1,30 %	±0,065 %
2-метилпропан (изо-	MEMS-i-C ₄ H ₁₀ -100	(от 0 до 100 % НКПР)	(±5 % HKΠP)
бутан) i-C ₄ H ₁₀		от 0 до 0,65 %	±0,065 %
Oy14H) 1-C411[0	MEMS-i-C ₄ H ₁₀ -50	(от 0 до 50 % НКПР)	(±5 % HKΠP)
		от 0 до 1,1 %	±0,055 %
	MEMS- C_5H_{12} -100		· · · · · · · · · · · · · · · · · · ·
н-пентан C_5H_{12}		(от 0 до 100 % НКПР)	(±5 % HKПР)
	MEMS- C_5H_{12} -50	от 0 до 0,55 %	±0,055 %
		(от 0 до 50 % НКПР)	(±5 % HKПР)
	MEMS- C_5H_{10} -100	от 0 до 1,4 %	±0,07 %
Циклопентан С5Н10		(от 0 до 100 % НКПР)	(±5 % HKПР)
	MEMS- C_5H_{10} -50	от 0 до 0,7 %	±0,07 %
		(от 0 до 50 % НКПР)	(±5 % HKΠP)

Продолжение таблицы /	2	2	1
1	2	3	4
	MEMS-C ₆ H ₁₄ -100	от 0 до 1,0 %	±0,05 %
н-гексан С ₆ Н ₁₄	V 11	(от 0 до 100 % НКПР)	(±5 % HKΠP)
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MEMS-C ₆ H ₁₄ -50	от 0 до 0,5 %	±0,05 %
	10121015 C01114 50	(от 0 до 50 % НКПР)	(±5 % НКПР)
	MEMS-C ₆ H ₁₂ -100	от 0 до 1,0 %	$\pm 0,05~\%$
Циклогексан C ₆ H ₁₂	WILWIS-C011[2-100	(от 0 до 100 % НКПР)	(±5 % НКПР)
Harriot executi Collins	MEMS-C ₆ H ₁₂ -50	от 0 до 0,5 %	$\pm 0,05~\%$
	WILWIS-C611[2-30	(от 0 до 50 % НКПР)	(±5 % НКПР)
	MEMS-C ₂ H ₆ -100	от 0 до 2,4 %	±0,12 %
Этан С2Н6	WIEWIS-C2116-100	(от 0 до 100 % НКПР)	(±5 % НКПР)
31an C ₂ 11 ₆	$MEMS-C_2H_6-50$	от 0 до 1,2 %	±0,12 %
	WIEWIS-C2116-30	(от 0 до 50 % НКПР)	(±5 % HKΠP)
Метанол СН ₃ ОН	MEMS-CH ₃ OH-50	от 0 до 3,0 %	±0,3 %
Метанол Сизон	MEMS-CH3OH-30	(от 0 до 50 % НКПР)	(±5 % HKΠP)
	MEMC C II 100	от 0 до 1,2 %	±0,06 %
Г С. И	$MEMS-C_6H_6-100$	(от 0 до 100 % НКПР)	(±5 % HKΠP)
Бензол С ₆ Н ₆	MEMO O II 50	от 0 до 0,6 %	±0,06 %
	$MEMS-C_6H_6-50$	(от 0 до 50 % НКПР)	(±5 % HKΠP)
	MENTO CHI 100	от 0 до 2,0 %	±0,1 %
Пропилен (пропен)	$MEMS-C_3H_6-100$	(от 0 до 100 % НКПР)	(±5 % HKΠP)
C_3H_6		от 0 до 1,0 %	±0,1 %
	$MEMS-C_3H_6-50$	(от 0 до 50 % НКПР)	(±5 % HKΠP)
	MEMS-C ₂ H ₅ OH-	от 0 до 1,5 %	±0,16 %
Этанол С ₂ Н ₅ ОН	48,3	(от 0 до 48,3 % НКПР)	(±5 % HKΠP)
	,	от 0 до 0,85 %	± 0,042 %
	MEMS- C_7H_{16} -100	(от 0 до 100 % НКПР)	(±5 % HKΠP)
н-гептан С7Н16		от 0 до 0,425 %	±0,042 %
	MEMS- C_7H_{16} -50	(от 0 до 50 % НКПР)	(±5 % HKΠP)
		от 0 до 2,6 %	±0,13 %
	$MEMS-C_2H_4O-100$	(от 0 до 100 % НКПР)	(±5 % HKΠP)
Оксид этилена С ₂ Н ₄ О		от 0 до 1,3 %	±0,13 %
	MEMS- C_2H_4O-50	(от 0 до 50 % НКПР)	(±5 % HKΠP)
2-пропанон (ацетон)		от 0 до 1,25 %	±0,13 %
С ₃ Н ₆ О	MEMS- C_3H_6O-50	(от 0 до 50 % НКПР)	(±5 % HKΠP)
C31160		от 0 до 1,6 %	±0,08 %
	MEMS-i- C_4H_8 -100	(от 0 до 100 % НКПР)	(±5 % HKΠP)
2-метилпропен (изо-		/	,
бутилен) і-С ₄ Н ₈	MEMS-i-C ₄ H ₈ -50	от 0 до 0,8 %	±0,08 %
		(от 0 до 50 % НКПР)	(±5 % НКПР)
	MEMS-C ₅ H ₈ -100	от 0 до 1,7 %	$\pm 0,085 \%$
2-метил- 1,3-бута-	141L1410 C3118-100	(от 0 до 100 % НКПР)	(±5 % НКПР)
диен (изопрен) С5Н8	MEMO O II 70	от 0 до 0,85 %	±0,085 %
	MEMS- C_5H_8 -50	(от 0 до 50 % НКПР)	(±5 % HKΠP)
		от 0 до 2,30 %	±0,12 %
	$MEMS-C_2H_2-100$	(от 0 до 100 % НКПР)	(±5 % HKΠP)
Ацетилен С ₂ Н ₂		от 0 до 1,15 %	±0,12 %
	MEMS- C_2H_2 -50	(от 0 до 50 % НКПР)	±0,12 70 (±5 % ΗΚΠΡ)
		(от о до зо /о ПКПГ)	(±3 /0 HKHF)

Продолжение таблицы			
1	2	3	4
Акрилонитрил С ₃ Н ₃ N	MEMS-C ₃ H ₃ N-50	от 0 до 1,4 %	$\pm 0,14 \%$
икрилопитрил Супут	WIEWIS-C31131N-30	(от 0 до 50 % НКПР)	(±5 % HKΠP)
	MEMS C-II- 100	от 0 до 1,0 %	$\pm 0,05~\%$
Метилбензол (то-	MEMS-C ₇ H ₈ -100	(от 0 до 100 % НКПР)	(±5 % HKΠP)
луол) С7Н8	MEMO O II 50	от 0 до 0,5 %	±0,05 %
• ,	MEMS-C ₇ H ₈ -50	(от 0 до 50 % НКПР)	(±5 % HKΠP)
D	MEMO O H. 27.5T	от 0 до 0,3 %	±0,024 %
Этилбензол С ₈ Н ₁₀	MEMS- C_8H_{10} -37,5T	(от 0 до 37,5 % НКПР)	(±3 % НКПР)
	MENTS OF HE 50	от 0 до 0,4 %	±0,04 %
н-октан С ₈ Н ₁₈	MEMS-C ₈ H ₁₈ -50	(от 0 до 50 % НКПР)	(±5 % HKΠP)
) (F) (G, G, H, O, Z)	от 0 до 1,0 %	±0,1 %
Этилацетат С ₄ Н ₈ О ₂	MEMS-C ₄ H ₈ O ₂ -50	(от 0 до 50 % НКПР)	(±5 % HKПР)
) (T) (G G XX G A 4 T	от 0 до 0,3 %	±0,036 %
Бутилацетат $C_6H_{12}O_2$	$MEMS-C_6H_{12}O_2-25T$	(от 0 до 25 % НКПР)	(±3 % НКПР)
1,3-бутадиен (диви-		от 0 до 0,7 %	±0,07 %
нил) С4Н6	MEMS- C_4H_6 -50	(от 0 до 50 % НКПР)	(±5 % HKΠP)
		от 0 до 3,1 %	±0,31 %
$1,2$ -дихлорэтан $C_2H_4Cl_2$	$MEMS-C_2H_4Cl_2-50$	(от 0 до 50 % НКПР)	(±5 % HKΠP)
Диметилсульфид		от 0 до 1,1 %	±0,11 %
диметилеульфид С ₂ H ₆ S	$MEMS-C_2H_6S-50$	(от 0 до 50 % НКПР)	(±5 % HKΠP)
C21165		от 0 до 0,6 %	±0,06 %
1-гексен C_6H_{12}	MEMS- C_6H_{12} -50	(от 0 до 50 % НКПР)	±0,00 % (±5 % ΗΚΠΡ)
2-бутанол (втор-бута-	MEMS-sec-C ₄ H ₉ OH-	от 0 до 0,5 %	±0,051 %
2-бутанол (втор-бута- нол) sec-C ₄ H ₉ OH			,
HOJI) Sec-C4H9OH	31,2T	(от 0 до 31,2 % НКПР)	(±3 % HKПР)
Винилхлорид C_2H_3C1	MEMS- C_2H_3C1-50	от 0 до 1,8 %	±0,18 %
		(от 0 до 50 % НКПР)	(±5 % HKПР)
	MEMS-C ₃ H ₆ -100	от 0 до 2,4 %	±0,12 %
Циклопропан С ₃ Н ₆		(от 0 до 100 % НКПР)	(±5 % HKΠP)
	$MEMS-C_3H_6-50$	от 0 до 1,2 %	±0,12 %
т v 1		(от 0 до 50 % НКПР)	(±5 % HKΠP)
Диметиловый эфир	MEMS-C ₂ H ₆ O-50	от 0 до 1,35 %	±0,14 %
C ₂ H ₆ O	- *	(от 0 до 50 % НКПР)	(±5 % HKΠP)
Диэтиловый эфир	MEMS-C ₄ H ₁₀ O-50	от 0 до 0,85 %	±0,085 %
$C_4H_{10}O$	1 10	(от 0 до 50 % НКПР)	(±5 % HKПР)
Оксид пропилена	MEMS-C ₃ H ₆ O-50	от 0 до 0,95 %	±0,095 %
C ₃ H ₆ O		(от 0 до 50 % НКПР)	(±5 % HKПР)
Хлорбензол С ₆ Н₅С1	MEMS-C ₆ H ₅ Cl-	от 0 до 0,5 %	±0,039 %
	38,4T	(от 0 до 38,4 % НКПР)	(±3 % HKПР)
2-бутанон (метил-	MEMS-C ₄ H ₈ O-50	от 0 до 0,75 %	±0,075 %
этилкетон) С ₄ Н ₈ О	1111110 041100 00	(от 0 до 50 % НКПР)	(±5 % НКПР)
2-метил-2-пропанол	MEMS-tert-C ₄ H ₉ OH-	от 0 до 0,9 %	$\pm 0.09~\%$
(трет-бутанол) tert-	50	(от 0 до 50 % НКПР)	±0,07 % (±5 % ΗΚΠΡ)
C ₄ H ₉ OH	30	(от о до эо летиин)	(±3 /0 IIIXIII)
2-метокси-2-ме-			
тилпропан (мети-	MEMS-tert-C ₅ H ₁₂ O-	от 0 до 0,8 %	$\pm 0.08 \%$
лтретбутиловый	50	(от 0 до 50 % НКПР)	(±5 % HKΠP)
эфир) tert-C ₅ H ₁₂ O			

Продолжение таблицы 7				
1	2		3	4
1,4-диметилбензол	MEMS-p- C_8H_{10} -	ОТ	0 до 0,2 %	±0,027 %
(п-ксилол) p-C ₈ H ₁₀	22,2T	(от 0 до	22,2 % НКПР)	(±3 % HKΠP)
1,2-диметилбензол		ОТ	0 до 0,2 %	±0,03 %
(о-ксилол) о-С ₈ H ₁₀	MEMS-o- C_8H_{10} -20T		(o 20 % НКПР)	(±3 % HKΠP)
2-пропанол (изопро- панол) i-C ₃ H ₇ OH	MEMS-i-C ₃ H ₇ OH-50	от 0 до 1,0 % (от 0 до 50 % НКПР)		±0,1 % (±5 % ΗΚΠΡ)
Октен С ₈ Н ₁₆	MEMS-C ₈ H ₁₆ -33,3T		0 до 0,3 % о 33,3 % НКПР)	±0,027 % (±3 % НКПР)
2-метилбутан (изопен- тан) i-C ₅ H ₁₂	MEMS-i-C ₅ H ₁₂ -50		0 до 0,65 % (о 50 % НКПР)	±0,065 % (±5 % НКПР)
Метантиол (метилмер- каптан) СН ₃ SH	MEMS-CH₃SH-50) до 2,05 % (о 50 % НКПР)	±0,21 % (±5 % НКПР)
Этантиол (этилмеркап- тан) С ₂ Н ₅ SH	MEMS-C ₂ H ₅ SH-50		0 до 1,4 % о 50 % НКПР)	±0,14 % (±5 % НКПР)
Ацетонитрил C ₂ H ₃ N	MEMS-C ₂ H ₃ N-50	ОТ	0 до 1,5 % о 50 % НКПР)	±0,15 % (±5 % HKПР)
2,3-дитиабутан (диме- тилдисульфид) С ₂ H ₆ S ₂	MEMS-C ₂ H ₆ S ₂ -50		0 до 0,55 % (о 50 % НКПР)	±0,055 % (±5 % HKПР)
Бензин (по пропану)	МЕМЅ-ПНБ-50	от 0 до 50 % НКПР		±5 % НКПР
Дизельное топливо (по пропану)	МЕМS-ПНД-50	от 0 до 50 % НКПР		±5 % НКПР
Керосин (по пропану)	МЕМS-ПНК-50	от 0 д	о 50 % НКПР	±5 % НКПР
Уайт-спирит (по пропану)	МЕМS-ПНУ-50	от 0 д	ю 50 % НКПР	±5 % НКПР
	MEMS-C ₂ C ₁₀ CH ₄ - 100		0 до 4,4 % о 100 % НКПР)	±0,22 % (±5 % НКПР)
		от 0 до 2,2 %		±0,22 %
Сумма углеводоро-	$MEMS-C_2C_{10}CH_4-50$		(о 50 % НКПР)	(±5 % HKΠP)
дов по метану C_2 - C_{10} (по метану)	MEMS-C ₂ C ₁₀ CH ₄ -	от 0 до	от 0 до 500 мг/м 3 включ.	±50 мг/м ³
	3000	3000 $M\Gamma/M^3$	св. 500 до 3000	$\pm (0,152 \cdot X - 15,6)$
	MEMS-C ₂ C ₁₀ C ₃ H ₈ -	от 0 до 1,7 %		±0,085 %
	100	_	о 100 % НКПР)	(±5 % НКПР)
Сумма углеводоро-	$MEMS-C_2C_{10}C_3H_8-$		0 до 0,85 %	±0,085 %
дов С2-С10 (по про-	50	(от 0 д	о 50 % НКПР)	(±5 % НКПР)
пану)	MEMS-C ₂ C ₁₀ C ₃ H ₈ -	от 0 до	от 0 до 500 мг/м ³ включ.	$\pm 50 \text{ M}\Gamma/\text{M}^3$
	3000	3000 $M\Gamma/M^3$	св.500 до 3000 _{мг/м³}	$\pm (0,152 \cdot X - 15,6)$
Сероводород H ₂ S	MEMS-H ₂ S-7,1T	(от 0	до 7,1 млн ⁻¹ до 10 мг/м ³)	$\pm 0,5$ млн $^{-1}$
сероводород п25	MEMS-H ₂ S-20		до 20 млн ⁻¹ до 28,4 мг/м ³)	±(0,1·X)

1	2	3	4
Сероводород H ₂ S	MEMS-H ₂ S-100	от 0 до 100 млн ⁻¹ (от 0 до 142 мг/м ³)	±(0,1·X)

^{1) —} Газоанализаторы с определяемыми компонентами, не приведенными в таблице, но указанными в Руководстве по эксплуатации, могут применяться в качестве индикаторов для предварительной оценки содержания компонентов. Газоанализаторы могут применяться для измерения содержания других определяемых компонентов при наличии аттестованных методик (методов) измерений (МИ) в соответствии с ГОСТ Р 8.563-2009.

Таблица 8 – Дополнительные метрологические характеристики

Наименование характеристики	Значение
Пределы допускаемой дополнительной погрешности от изменения температуры окружающей среды от -60 °C до +15 °C включ. и св. +25 °C до +165 °C на каждые 10 °C, в долях от пределов допускаемой основной погрешности	±0,2
Время установления показаний $T_{0,9}$, с, не более ¹⁾	
- для инфракрасного сенсора	10
- для термокаталитического сенсора	10
- для электрохимического сенсора	15
- для фотоионизационного сенсора	15
- для полупроводникового сенсора	20
Дискретность отображения концентрации устанавливается в зависимости от	
диапазона измерений:	
- от 0 до 10	0,01
- от 0 до 1000	0,1
- от 0 до 10000 и выше	1

 $^{^{1)}}$ – без учета установленных защитных фильтров, а также, для фотоионизационного сенсора, периодичности измерений концентрации (периодичность определяется при заказе и может быть изменена пользователем).

Таблица 9 – Технические характеристики

Наименование характеристики	Значение
	Sharehine
Выходной сигнал*:	
- цифровой	HART/RS485 (MODBUS)
- аналоговый токовый, мА	от 4 до 20
- беспроводная передача данных	Bluetooth (опция)
- дискретный выходной сигнал	3 реле (ПОРОГ1, ПОРОГ2,
	ПОРОГЗ/АВАРИЯ)
Автономное питание, месяцев, не менее	36

Продолжение таблицы 9	<u>_</u>	
Наименование характеристики	Значение	
Условия эксплуатации:		
- температура окружающего воздуха, °С		
мод. SENSOR 01	от -60 до +65	
мод. SENSOR 02	от -60 до +65	
мод. SENSOR 03	(от -60 до +65) / (от -60 до +165)	
мод. PERSONAL MINI, PERSONAL PRO	(от -40 до +60); (от -55 до +65)	
- относительная влажность, %, не более	98	
- атмосферное давление для газоанализаторов с моди-	от 80 до 120	
фикацией сенсоров ЕС, кПа	01 80 до 120	
- атмосферное давление для газоанализаторов с моди-	от 60 до 120	
фикацией сенсоров IR, LEL, PID, MEMS, кПа	01 00 до 120	
Маркировка взрывозащиты:		
- модификация SENSOR 01	1Ex db IIC T6 Gb X	
- модификация SENSOR 02	1Ex db [ia Ga] IIC T6 Gb X или	
	1Ex db IIC T6 Gb X	
- модификация SENSOR 03	1Ex db IIC T6 Gb X или	
	1Ex db IIC T3 Gb X	
- модификация PERSONAL MINI	0Ex ia IIC T4 Ga X	
- модификация PERSONAL PRO	0Ex ia IIC T4 Ga X или	
	0Ex da ia IIC T4 Ga X	
Степень защиты от внешних воздействий,		
обеспечиваемая оболочкой, по ГОСТ 14254-2015 (IEC	IP66/IP68	
60529:2013)		
Напряжение питания постоянного тока (для мод.	от 12 до 36	
SENSOR 01, SENSOR 02, SENSOR 03), B	01 12 до 30	
Источник питания мод. PERSONAL MINI:		
- первичный элемент (тип)	тип E (Li-SOCl2)	
- номинальное напряжение, В	3,6	
Источник питания мод. PERSONAL PRO:		
- первичный элемент (тип)	Li-Po	
- номинальное напряжение, В	3,7	
Габаритные размеры (длина×ширина×высота), мм, не		
более:		
- модификация SENSOR 01	120×105×156	
- модификация SENSOR 02	145×110×208	
- модификация SENSOR 02 исп. 01	145×123×245	
- модификация SENSOR 02 исп. 02 (электронный		
модуль)	140×145×110	
- модификация SENSOR 03	130×95×80	
- модификация PERSONAL MINI	112×62×47	
- модификация PERSONAL PRO	135×65×50	

Наименование характеристики	Значение
Масса, кг, не более:	
- модификация SENSOR 01	
в стальном корпусе	3,5
в алюминиевом корпусе	1,5
- модификация SENSOR 02	
в стальном корпусе	4,0
в алюминиевом корпусе	2,0
- модификация SENSOR 03	
в стальном корпусе	2,0
в алюминиевом корпусе	1,0
- модификация PERSONAL MINI	0,12
- модификация PERSONAL PRO	0,22
* Перечень и количество выходных сигналов опре	деляется заказом

Таблица 10 – Показатели надежности

Наименование характеристики	Значение
Средний срок службы, лет, не менее	21
Средняя наработка на отказ, ч, не менее:	
- для газоанализаторов с инфракрасным сенсором IR	100000
- для газоанализаторов с термокаталитическим LEL, электрохимическим EC,	
фотоионизационным PID сенсором, полупроводниковым сенсором MEMS	40000

Знак утверждения типа

наносится типографским способом на титульный лист паспорта и на маркировочную табличку методом лазерной гравировки или ударно-точечным методом.

Комплектность средства измерений

Таблица 11 – Комплектность средства измерений

Наименование	Обозначение	Количество
Газоанализатор ВАСЅ 1)	АПДУ.9020.413.216;	
	АПДУ.9021.413.216;	
	АПДУ.9022.413.216;	1 шт.
	АПДУ.9023.413.412;	
	АПДУ.9024.413.412.	
Паспорт	АПДУ.9020.413.216ПС;	
	АПДУ.9021.413.216ПС;	
	АПДУ.9022.413.216ПС	1 шт.
	АПДУ.9023.413.412ПС;	
	АПДУ.9024.413.412ПС ²⁾	
Руководство по эксплуатации	АПДУ.9020.413.216РЭ;	
	АПДУ.9021.413.216РЭ;	
	АПДУ.9022.413.216РЭ;	1 экз. ³⁾
	АПДУ.9023.413.412РЭ;	
	АПДУ.9024.413.412РЭ ²⁾	
Упаковка	_	1 шт.

Наименование	Обозначение	Количество
--------------	-------------	------------

- 1) Модификация в соответствии с заказом.
- 2) В соответствии с заказом.
- $^{3)}$ Один экземпляр на 10 газоанализаторов в партии, но не менее одного экземпляра на поставку.

Сведения о методиках (методах) измерений

приведены в разделе 13 «Работа газоанализатора» документа АПДУ.9020.413.216РЭ «Газоанализаторы BACS. SENSOR 01. Руководство по эксплуатации», разделе 2 «Использование по назначению» документа АПДУ.9021.413.216РЭ «Газоанализаторы BACS. SENSOR 02. Руководство по эксплуатации», разделе 2 «Использование по назначению» документа АПДУ.9022.413.216РЭ «Газоанализаторы BACS. SENSOR 03. Руководство по эксплуатации», разделе 2 «Использование по назначению» документа АПДУ.9023.413.412РЭ «Газоанализаторы BACS. PERSONAL MINI. Руководство по эксплуатации», разделе 2 «Использование по назначению» документа АПДУ.9024.413.412РЭ «Газоанализаторы BACS. PERSONAL PRO. Руководство по эксплуатации».

Нормативные документы, устанавливающие требования к средству измерений

Приказ Федерального агентства по техническому регулированию и метрологии от 31 декабря 2020 г. № 2315 «Об утверждении государственной поверочной схемы для средств измерений содержания компонентов в газовых и газоконденсатных средах»;

Постановление Правительства Российской Федерации от 16 ноября 2020 г. № 1847 «Об утверждении перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений» (п. 4.43);

ГОСТ 13320-81 Газоанализаторы промышленные автоматические. Общие технические условия;

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия;

ТУ 26.51.53-053-21189467-2024 «Газоанализаторы BACS. Технические условия».

Правообладатель

Общество с ограниченной ответственностью Научно-техническая фирма «БАКС» (ООО НТФ «БАКС»)

ИНН 6311007747

Юридический адрес: 443022, г. Самара, пр-кт Кирова, д. 10

Телефон: +7(846) 267-38-12, 267-38-13, 267-38-14

E-mail: mail@bacs.ru

Изготовитель

Общество с ограниченной ответственностью Научно-техническая фирма «БАКС» (ООО НТФ «БАКС»)

ИНН 6311007747

Юридический адрес: 443022, г. Самара, пр-кт Кирова, д. 10

Адреса мест осуществления деятельности:

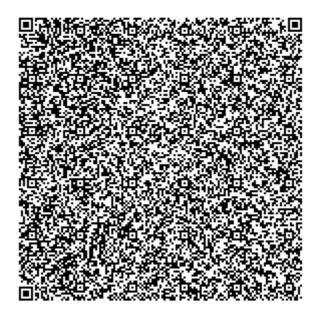
443022, г. Самара, пр-кт Кирова, д. 10;

443022, г. Самара, пр-кт Кирова, д. 22

Телефон: +7(846) 267-38-12, 267-38-13, 267-38-14

E-mail: mail@bacs.ru

Испытательный центр


Общество с ограниченной ответственностью «ПРОММАШ ТЕСТ Метрология» (ООО «ПРОММАШ ТЕСТ Метрология»)

Юридический адрес: 119415, г. Москва, пр-кт Вернадского, д. 41, стр. 1, помещ. I, ком. 28

Телефон: +7 (495) 108 69 50

E-mail: info@metrologiya.prommashtest.ru

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.314164.

